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1. Introduction

The self-similar free convection from the outer surface of a heated body is of great interest in several technical and
environmental heat transfer processes that occur in practice, such as in meteorological devices, builing insulation sys-
tems, heat film sensors, energy storage in enclosures, etc. For a comprehensive review of this topic see e.g. Gebhart

et al. [1], Gersten and Herwig [2], Bejan [3], and Schlichting and Gersten [4]. While the bulk of the classical
research was concerned with simple geometries like flat plates, cylinders, and spheres, the general case of the free
convective flow over a nonisothermal two-dimensional body of arbitrary geometric configuration has been attacked
only a couple of years ago by Pop and Takhar [5]. The similar problem for nonisothermal curved surfaces embedded
in fluid-saturated porous media has been discussed by Nakayama et al. [6––8] and for the case of micropolar fluids by
Char and Chang [9]. In both of these problems, the existence of a family of curved surfaces and of corresponding
temperature distributions which permit similarity solutions of power-law type has been proven [5––9]. The equation of
the corresponding shape curves has been given in [5] and [6] in terms of a series expansion which only converges in the
range 0 < n � 1=2 of the shape exponent n.

The aim of the present note is to show that (i) the two-dimensional curved surfaces which allow for self-similar
free convection flows exist for any n > 0; (ii) their equation may be expressed in terms of Gauss’ hypergeometric func-
tion; and (iii) to discuss the main features of these surfaces as functions of n.

2. Basic equations

In the notation of Pop and Takhar [5] the parametric equations fz ¼ zðxÞ; r ¼ rðxÞg of the shape curve are given by

zðxÞ ¼
Ðx
0

ðgx=gÞ dx0 ; rðxÞ ¼
Ðx
0

½1
 ðgx=gÞ2�1=2 dx0 ð1Þ

where x denotes the boundary layer coordinate along the curved surface while r and z are the horizontal and the
vertical coordinates of the points of the shape curve z ¼ zðrÞ; respectively. The origin of the coordinate system (r, z)
lies on the lower stagnation line of the heated surface and gx denotes the tangential component of the acceleration due
to the gravity g. For the similarity of power-law type, we assume that gx has the following form:

gx ¼ g � x

xr

� �n

ð2Þ

where n > 0 (n ¼ 0 corresponds to a vertical plane) and xr is a reference length measured along the curved surface; xr
represents also the maximum allowed value of the boundary layer coordinate x : 0 � x � xmax � xr. The first integral
in (1) is immediate and the second one has been given in the earlier literature in terms of a series expansion which, as
pointed out in [5] and [6], it converges only for 0 < n � 1=2.

3. General solution

The second integral in (1) can be reduced easily to an incomplete beta function which in turn may be expressed in
terms of Gauss’ hypergeometric function F ða; b; c; x) (see e.g. [10]). The results of these calculations, which is valid for
any n > 0, reads

z

zr
¼ x

xr

� �nþ1

;
r

zr
¼ ðnþ 1Þ x

xr
F

1

2n
; 
 1

2
;

1

2n
þ 1;

x

xr

� �2n
 !

: ð3Þ

The variation range of z and r is 0 � z � zmax ¼ zjx¼xr
� zr ¼ xr=ð1þ nÞ; and 0 � r � rmax ¼ rjx¼xr

, respectively. The
slope dz=dr of the shape curves z ¼ zðrÞ is always zero in the origin x ¼ r ¼ z ¼ 0, whereas at the upper end r ¼ rmax

of the r-range, one has ðdz=drÞ jr¼rmax
¼ 1 for any n > 0. Hence, all the shape curves z ¼ zðrÞ end in the point
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ðr; zÞ ¼ ðrmax; zrÞ with a vertical tangent, where

rmax

zr
¼ ðnþ 1Þ � F 1

2n
; 
 1

2
;

1

2n
þ 1; 1

� �
¼

G 3
2

� �
� G 1

2n

� �
G 1

2n þ 1
2

� � ; ð4Þ

G being the gamma function. (Here the known relation F ða; b; c; 1Þ ¼ G ðcÞ G ðc
 a
 bÞ G
1 ðc
 aÞ G
1 ðc
 bÞ has
been used, see [10].) Therefore, the equation of the shape curves in its implicit form, r ¼ rðzÞ, reads

r

rmax
¼

F 1
2n ; 
 1

2 ; 1
2n þ 1; z

� �
F 1

2n ; 
 1
2 ; 1

2n þ 1; 1
� � z1=2n where z � z

zr

� �2n=nþ1

: ð5Þ

All the above equations are valid for any n > 0. However, from (5) one obtains for n � 1 the following asymptotic
relations:

z

zr
ffi r

nzr

� �n

;
rmax

zr
ffi n ; n � 1 : ð6Þ

As an illustration, Fig. 1 shows the shape curves for different values of n. The main difference between the curves
corresponding to n � 1 and n � 1 consists of the large and flat bottom part of the latter ones in accordance with the
relations given by (6). This finding is also supported by the behavior of the curvature C of the shape curves z ¼ zðrÞ in
the origin of the coordinate system (r, z). Indeed, from (3) one obtains

C ¼ z00

ð1þ z02Þ3=2

�����
r¼0

¼ n

ðnþ 1Þ ðn2 þ 2nþ 2Þ3=2
lim
x!0

x

xr

� �n
1

ð7Þ

where primes denote differentiation with respect to x. Expression (7) which shows that C ¼ 1 for 0 < n < 1; C ¼ 1=2
for n ¼ 1, while for any n > 1; C ¼ 0. On the other hand, from (5) we get the following elementary solution for n ¼ 1:

r

zr
¼ p

2

r

rmax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

zr
1
 z

zr

� �s
þ arcsin

ffiffiffiffi
z

zr

r
: ð8Þ

Having in mind the properties of the hypergeometric functions, [10], the general solution given by (5) may be written
in the (equivalent) form

r

rmax
¼ 1 


F ð1
 1
2n ;

3
2 ;

5
2 ; 1
 z

�
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 1

2n ;
3
2 ;

5
2 ; 1

� � ð1 
 zÞ3=2 : ð9Þ
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Fig. 1. Shape curves for n ¼ 0:5, 1.0, 2.0, 3.5, and 5.0. The variation range of r=zr is 0 � r � rmax=zr, where rmax=zr is
given by eq. (4). The large and flat bottom parts of the curves corresponding to n � 1 (and described by eq. (6)), can
already be seen for n ¼ 3:5 and 5.



This solution has the advantage that in the particular cases ð2nÞ
1 
 1 � N ¼ 0; 1; 2; . . . , i.e., for n ¼ 1=2, 1/4, 1/6, . . .
the function F in the numerator of eq. (9) reduces to a polynomial of degree N in 1
 z:

F 1
 1

2n
;
3

2
;
5

2
; 1
 z

� �
¼
XN
k¼0

ð
NÞk ð3=2Þk
ð5=2Þk

ð1 
 zÞk

k!
ð10Þ

where ðaÞk stands for Pochhammer’s symbol, ðaÞk ¼ aðaþ 1Þ ðaþ 2Þ . . . ðaþ k
 1Þ, ðaÞ0 ¼ 1, see [10].
For 0 < n � 1=2, eq. (9) is identical to that with the results reported in [5] and [6] as obtained by a series

expansion of the integrand in eq. (1), see [6]. For the values n ¼ 1=2, 1/4, 1/6, . . . in this range, one immediately
obtains from eq. (9) the special solutions reported in [6]. In particular, for n ¼ 1=2, i.e. N ¼ 0, we obtain
rmax ¼ zr ¼ 2xr=3, z ¼ ðz=zrÞ2=3, and

r

rmax
¼ r

zr
¼ 1
 1
 z2=3

 �3=2
¼ 1
 1
 z

zr

� �2=3
" #3=2

: ð11Þ

In this case the explicit equation z ¼ zðrÞ can be also written as

z

zr
¼ 1 
 1
 r

rmax

� �2=3
" #3=2

: ð12Þ

4. Summary

In the present research note the problem of the heated two-dimensional curved surfaces which can give rise to self-
similar free convection flows (both in a quiescent fluid and in a fluid-saturated porous medium) has been reconsidered.
The equation of the shape curves, valid for any positive value of the shape exponent n, was given in terms of Gauss’
hypergeometric function. In the range 0 < n � 1=2 a whole agreement with the results of earlier authors, [5––9], has
been found. However, for n ¼ 1 the equation of the shape curve has been expressed in terms of elementary functions.
The curvature C of the surface at the lower stagnation line (the origin of the coordinate system) is 1 for 0 < n < 1,
1/2 for n ¼ 1, while for any n > 1, C ¼ 0 holds. In the range n � 1 of the shape exponent, the ratio rmax=zmax of the
horizontal and vertical dimensions of the curved surface increases with n according to rmax=zmax ffi n. Thus, the limit-
ing case n ! 1 corresponds to a horizontal plane of which hot side is faced downwards. Below this infinite surface no
free convection can occur. It is worth mentioning however that if this horizontal surface would reduce to a plate of
finite dimensions, the fluid could escape by spilling over its edges (see e.g. Bejan [3], p. 196).
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