
| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

What is VectorScript ?

• VectorScript is the scripting language component of the
VectorWorks software package.

• It is a lightweight programming language which syntacti-
cally resembles Pascal.

• VectorScript is actually a “superset” of the
Pascal language, extending basic Pascal capabilities with a
number of APIs (application programming interfaces) which
provide access to the features and funtionality of the Vector-
Works CAD engine.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Some Background On VectorScript

• VectorScript originated in 1988 as MiniPascal in the Mini-
CAD+ 1.0 release.

• With the advent of VectorWorks in 1998, MiniPascal became
VectorScript.

• The core VectorScript language continues to be developed
by Nemetschek North America.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

• VectorScript is a relatively general purpose programming
language, it provides the ability to perform most common pro-
gramming tasks. Tasks such as
 • computations
 • storing a value, and
 • manipulating data

• VectorScript also provides extended capabilities specific to the
VectorWorks product.

• Object Creation and Editing
 • create and edit objects directly
 • primitive objects (lines, rectangles, ...)
 • more complex objects (multiple 3D extrudes, 3D solids

• Document Control

• Extended Data
 • access to and control over - worksheets
 - data records
 - textures

What VectorScript Can Do

Some Background On VectorScript

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

What VectorScript Can’t Do

Some Background On VectorScript

• VectorScript does not have the ability to work across multiple docu-
ments or outside of a VectorWorks document context.

• For reasons of simplicity and stability, VectorScript does not have the
ability to manage or control memory allocation.

• VectorScript does not support system level calls for file-related or
other tasks.

• VectorScript does not provide external database or other connectivity
options.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

.. in the VectorWorks VectorScript Editor.

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

.. in a texteditor with Syntax Highlighting

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Identifies the script to the VectorScript compiler
PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Declares data storage for the script

The source code of the script

PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Tells the VectorScript compiler to run the script

PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Is VectorScript easy ?

yes!

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..always ?

no.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Can I get sick of VectorScript ?

no.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..really ?

ok, .. it depends.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How to learn VectorScript?

• write programms with VectorScript

• make mistakes

• make mistakes

• make mistakes

• make mistakes

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Case Sensitivity

The Grammatik of VectorScript

• VectorScript is not case sensitive. This means that items
such as language keywords, variables, function names, and
any other identifiers can be specified using uppercase,
lowercase, or a mixed case and still be compatible with
other variations of the same item.

 • APFEL = apfel = Apfel

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

speaking Variables

The Grammatik of VectorScript

• use speaking Variables in your Scripts
 • it makes live more easy
 • it makes your Script more readable
 • you and your Colleagues will understand your script faster

 • e.g. rectLength, rectLeftCornerXpos

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

• Since spaces, tabs, and new lines do not have meaning to the Vec-
torScript compiler, you are free to use them to indent and format your
script code. This type of formatting makes your scripts easy to read
and understand.

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello’;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

PROCEDURE FirstExample;
CONST
kGREETING = ‘Hello’;
VAR
myMessage : STRING;
BEGIN
myMessage:=’VectorScript’;
Message(kGREETING,myMessage);
Wait(5);
SysBeep;
ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

PROCEDURE FirstExample;CONST kGREETING = ‘Hello’;VAR myMessage : STRING;BEGIN myMessage:=’VectorScript’;
Message(kGREETING,myMessage);Wait(5);SysBeep;ClrMessage;END;Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Comments

The Grammatik of VectorScript

• Comments in VectorScript are used to place descriptive text within
script code. They are most often used to document script code for your
reference and for others who may work on your scripts. The Vector
Script compiler ignores comments.

• The general syntax for a single VectorScript comment is:

 {This is a comment}

• To comment out a block of the VectorScript code the syntax is:

 (* my comment:
 write what ever you wanted,
 even VectorScriptcode or {other comments!}
 *)

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Identifiers

• Identifiers in VectorScript are symbols which are used to refer to something
else: constants, variables, data types, procedure or function names, and other
similar items. The rules for writing VectorScript identifiers are :

 • The first character must be a letter or an underscore.
 • Subsequent characters may be a character, digit, or underscore.
 • Identifiers may not contain spaces, tabs, or other characters.

Value Identifiers
 num color_32bit totalLumberUsed
 SUM _dummy A_very_fine_identifier

Invalid Identifiers
 52pickup three+two SUB TOTAL

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Reserved Words

ALLOCATE AND ARRAY BEGIN
BOOLEAN CASE CHAR CONST
DIV DO DOWNTO DYNARRAY
ELSE END FALSE FOR
FUNCTION GOTO HANDLE IF
INTEGER LABEL LONGINT MOD
NIL NOT OF OR
OTHERWISE PI PROCEDURE REAL
REPEAT STRING STRUCTURE THEN
TO TRUE TYPE UNTIL
USES VAR VECTOR WHILE

FILE FORWARD IMPLEMENTATION INHERITED
INTERFACE INTRINSIC OBJECT OVERRIDE
PACKED PROGRAM SET UNIT
USES WITH

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Variables

Variables, and Constants

• The VAR block in the VectorScript is the only location where variables
can be declared;

• The purpose of the VAR block is to define storage requirements, not
to define data.

• The general syntax for a variable declaration is:

 <identifier>(,<identifier>,...) : <data type>;

 jobName:STRING;
 i,j,k:INTEGER;

VAR
 myMessage : STRING;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Constants

Variables, and Constants

• The CONST block in the VectorScript is the only location where con-
stants can be declared;

• Constants, unlike variables, do not require an explicit data type..

• The general syntax for a variable declaration is:

 <identifier> = <value>;

 LOCAL_GREETING_FRENCH = ´Bonjour ´;

CONST
 kGREETING : ´Hello´;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Fundamental Data Types

Data Types

• Numeric
• Text
• Other

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Numeric

Data Types

• INTEGER
-32767 to 32767

• LONGINT
-2.147.183.647 to 2.147.183.647

• REAL

1.9 x 10e-4951 to 1.1 x 10e4932

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Text

Data Types

• STRING
 • up to 255 characters
 • ASCII character

• CHAR
 • a single ASCII character

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..Other

Data Types

• BOOLEAN
 • TRUE or FALSE

• HANDLE
 • to store a reference to other VectorWorks data in memory.

• VECTOR
 • A VectorScript VECTOR consists of three component REAL values
 which can also be treated as a single unit value.

• POINT
 • to store the coordinates of a 2D point. It is a compound data type
 consisting of two component REAL values: x and y.

• POINT3D
 • to store the coordinates of a point in 3D space. It is a compound
 data type consisting of three component REAL values: x, y and z.

• RGBColor
 • The RGBCOLOR data type can store a color as three components:
 red, green,and blue. Each component is a LONGINT value.

• NIL

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The FOR Statement

Repetition Statements

• FOR ... TO... DO
 PROCEDURE LOOP;
 VAR
 i : INTEGER;
 BEGIN
 FOR i:=1 TO 5 DO rect(i,i,i*2,i*2);
 END;
 Run(LOOP);

• FOR ... DOWNTO... DO

 BEGIN
 FOR i:=1 DOWNTO -5 DO rect(i,i,i*2,i*2);
 END;

• FOR ... TO... DO BEGIN

 BEGIN
 FOR i:=1 TO 5 DO BEGIN
 rect(i,i,i*2,i*2);
 oval(i,i,i*2,i*2);
 SysBeep;
 END;
 END;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The WHILE Statement

Repetition Statements

• WHILE ... DO
 PROCEDURE WhileLoop;
 VAR
 h : HANDLE;
 BEGIN
 h:= FActLayer;
 WHILE (h <> NIL) DO BEGIN
 SetSelect(h);
 h:=NextObj(h);
 END;
 END;
 Run(WhileLoop);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The REPEAT Statement

Repetition Statements

• REPEAT ... UNTIL (...)
 PROCEDURE RepeatLoop;
 VAR
 h : HANDLE;
 BEGIN
 h:= FActLayer;
 REPEAT
 SetSelect(h);
 h:=NextObj(h);
 UNTIL (h=NIL);
 END;
 Run(RepeatLoop);

• Unlike the WHILE statement, however, the REPEAT statement
evaluates the control expression after executing its controlled
statement. This means that the controlled statement will always
execute at least once.

