|l | caad:hbt:arch:ethz I T

VectorScript: Introduction To VectorScript

User Defined Functions

e User-Defined Procedures.

e User-Defined Functions.

|l caad:hbt:arch:ethz 11T VectorScript: Introduction To VectorScript

User Defined Functions

User-Defined Procedures

 with user defined functions, you can break large script tasks into
smaller ones.

 Another term for user-defined functions is
subroutines which, as the name implies, are pieces of
script code which perform tasks within the main script.

- User-defined procedure subroutines are the most common type of
subroutine.

- User-defined procedures are declared after the definition (CONST,
TYPE, and VAR) blocks of a script, but before the script body.

- Just like a script, subroutines may have any of the standard Vector-
Script definition blocks (LABEL, CONST, TYPE, or VAR) as well as a script
body.

- The general syntax for user-defined procedures is:

PROCEDURE <procedure identifier>[(<parameter list>)]
e.g. PROCEDURE SumOfSquares(limit:INTEGER; VAR result:INTEGER);

|l caad:hbt:arch:ethz 11T VectorScript: Introduction To VectorScript

User Defined Functions

User-Defined Procedures

» Following the subroutine identifier is the parameter list for the sub-
routine. This optional list defines a method of moving data in and out
of the subroutine.

» While it is possible to refer to values in the enclosing program
blocks directly, doing so would eliminate the ability to easily use the
subroutine in other code, which is one of the major advantages of us-
ing subroutines.

- The parameter list declares a set of identifiers (and their associated
data types) that will be used to pass data to and from the subroutine.

- The VAR keyword indicates an identifier that will be used to pass
data out of the subroutine to the calling code.

- Identifiers in the parameter list can be treated as variables and used
within the subroutine script code.

« By calling the subroutine, the order and types of the variable identi-
fiers must exactly match those in the declaration.

|l | caad:hbt:arch:ethz I [T111111111111|——VectorScript: Introduction To VectorScript

User Defined Functions

User-Defined Procedures

s example:

Procedure testSubroutine;

VAR
myPosX,myPosY: REAL;
myRadius, myDiameter INTEGER;
{SUBROUTINES}
Procedure CircelByPointAndRadius(rad, pointX, pointY : REAL; VAR diameter:INTEGER);
BEGIN
diameter:=2*rad;
oval(pointX-rad, pointY-rad, pointX+rad, pointY-+rad);
END;

{End of declaration subroutine}

BEGIN;

myPosX:=23.5;

myPosY:=myPosX;

myRadius:= 50;

CircelByPointAndRadius(myRadius, myPosX, myPosY, myDiameter);
END;
Run(testSubroutine);

|l caad:hbt:arch:ethz 11T VectorScript: Introduction To VectorScript

User Defined Functions

User-Defined Functions

» User-defined functions incorporate all the features of user-defined procedures,
but they have one additional feature which makes them extremely useful
when writing scripts: an associated value.

« User-defined functions, unlike procedures, can pass data out of the subroutine
through a return value, which associates the value with the subroutine identifier.

« User-defined function declarations have one additional requirement: a return
value type after the parameter list. This data type indicates what type of data
will be passed through the return value mechanism and will be associated
with the identifier.

« The general syntax for user-defined functions is:

FUNCTION <procedure identifier>[(<parameter list>)]:<return value type>

|l | caad:hbt:arch:ethz I

VectorScript: Introduction To VectorScript

User Defined Functions

User-Defined Functions

s example:

PROCEDURE SubrExample?2;
VAR
n,sum:INTEGER;

FUNCTION SumOfSquares(limit:INTEGER):INTEGER;
BEGIN
SumOfSquares:= limit*(limit+1)*(2*limit+1)/6;
END;

BEGIN
n:=IntDialog(‘Enter the limit value’,’0’);
{sum of squares for the first n integers}
sum:= SumOfSquares(n);
Message(‘The sum of squares is: ‘,sum);
END;
Run(SubrExample2);

