
Algorithmic Extension of Architecture
Toni Kotnik

Algorithmic Extension of Architecture
Toni Kotnik

MAS ETH ARCH/CAAD
2005/06

Individual Thesis

Zurich
October 2006

dedicated to the memory of my father

Acknowledgement

This individual thesis is part of my postgraduate studies in computer-aided architec-
tural design at the Swiss Federal Institute of Technology (ETH) Zurich. My thanks
go to Prof. Dr. Ludger Hovestadt and his team at the chair of CAAD for their hospi-
tality and cooperativeness and Philipp Schaerer for the smooth organization of the
course. Part of this thesis was done during a stay at the Architectural Association
London. For inspiring comments on my project I would like to thank Tom Verebes,
Eugene Han and George Liaropoulos-Legendre.

Content

Abstract ... 9

Theory ... 11
Computability ... 15

Turing machine ... 17
Algorithmic perspective ... 21

Drafting and modelling as graphical computation ... 25
From the representative to the algorithmic ... 31

Towards a conceptual framework ... 37
Conclusion ... 43

Notes ... 47
Literature ... 53

Roof Design ... 59

Appendix: MEL-Script ... 91

Abstract

Over the past decade an increasing amount of architects have readdressed formal
issues. This development is closely related to the availability of powerful computers
and software that enable the use of computational mechanisms for the explora-
tion of formal systems. However, up to now the theoretical foundations of this new
digital methods in design are still unformulated. The present work, therefore, tries
to formulate an abstract conceptual framework for the evaluation of different digital
approaches to architectural design. This framework is based on the Turing machine
as an abstract model for the computer and it results in an algorithmic description of
every task performed by the machine. As a consequence, every form generated in
a digital design process is bound to an algorithmic description of its own morpho-
genetic process. The level of awareness of this relation is then used to formulate a
conceptual framework of digital design. Furthermore, the framework is compared
to a similar approach to the digital in architectural design by Oxman. Both studies
show, that the digital way of designing and exploring architecture has to be seen as
an extended form of expression that is interwoven with the non-digital in manifold
ways. Finally, the design of a roof structure gets used to examine the algorithmic ap-
proach to architecture in more detail.

Theory

12

Algorithmic Extension of Architecture

Coop Himmelb(l)au: UFA Cinema, Dresden, Germany, 1996-98
shifting and shearing as manageable geometric operations

operative example

THEORY

 13

In 1963 Ivan Sutherland’s Sketchpad program, the first interactive graphical design
tool, demonstrated that computers could be used for drafting and modeling, not
only for number crunching, and already by the mid-1990s architectural practice
without graphics software had become unimaginable. However, in spite of the
fact that computer-aided design technology has been adopted almost universally
as the predominant means of production in architectural practice, its use merely
represents the commercialization of the simplest and most obvious application
of information technology in architectural design - the automation of traditional
processes like drafting, modeling, and communicating - without adding value to
the practice and its products. [Kalay, 2004:xvi] As a result, most architectural
design solutions are still crafted manually, much the same way they have been
for the past 500 years.

“Beyond the fact that over the past decade a new generation of avante-
garde architects is pushing digital technology to its limits, so far it has had
relatively little qualitative impact on the profession of architecture at large.
In general, information technology has improved the efficiency of designing
buildings, when in fact it has the potential to reinvent the architectural
design process itself.” [Kalay, 2004:xvi]

In the present work the goal is to formulate an abstract theoretical framework for
digital design in order to activate this potential for the reinvention of the design
process by means of the computer. Up to now, the theoretical foundations of
digital design are still unformulated with the basic concepts bound up in ideological
positions. [Oxman, 2006:239] In avoidance of such struggle, this paper is based
on the simple observation that the possible reinvention of architectural thinking in
the digital realm is essentially bound to the computer as its principal design tool.

14

Algorithmic Extension of Architecture
operative example

Lars Spuybroek: Water-experience pavilion, Neeltje Jans, Netherlands, 1993-97
modeling of beam structure as concatenation of circular segments

THEORY

 15

In general, every tool has a specific way it can be used and this peculiar form of
usage influences the perception of the user and his way of thinking. That is why
the computer itself should be the starting point of an investigation into the digital
design of architecture. Using methods from computability theory a view onto the
discipline from the outside will be achieved that enables a better understanding
of the way the design process will be influenced by the digital. Furthermore, this
distancing from the discipline of architecture avoids any ideological positioning
inherent to every discussion from within.

Computability

The versatility of a computer is built on the universalitiy of its main principle: a
machine, the hardware, manipulating data accordings to a set of instructions, the
software. In this general setting every data takes the form of a finite sequence of
bits and that is why it can be coded as a natural number. Hence, a program p can
be viewed as partial function on the set of natural numbers with output out e
as result of a computation of the input in e that is p(in) = out. (Figure 1)

It is this abstract setting for a computing device that facilitates the principal
question of computability, i.e. for which (partial) function f exists a program p such
that f(in) = p(in) for every valid input in e . Surprisingly, this question existed
already before the invention of modern digital computers. In the 1930’s various
mathematicians like Alonzo Church, Kurt Gödel or Alan Turing started to develop
precise, independent definitions of what it means to be computable in order to

Figure 1: functional description of program

16

Algorithmic Extension of Architecture

Jakob & MacFarlane: Restaurant Le Georges, Centre Georges Pompidou, Paris, France, 1999
topological deformation of regular grid structure

operative example

THEORY

 17

answer a mathematical problem stated by David Hilbert.

Intuitively, a task is computable if one can specify a finite sequence of instructions
which when followed will result in the completion of the task. This intuition must
be made precise by defining the capabilities of the machine that is to carry
out the instructions, because machines with different capabilities may be able
to complete different sets of instructions and, therefore, may result in different
classes of computable functions. However, it is a remarkable mathematical fact
that all the different precise definitions of computability lead to the same class
of functions. In a practical sense this means that if one can give an intuitively
convincing description of an algorithm for computing a function, than one can find
an effective procedure in one of the precise definitions as well.

Turing machine

In 1936 Alan Turing published a paper on Hilbert’s problem. [Turing, 1936] A by-
product of this mathematical work was the first machine-based model of what it
means for a function to be computable, and the description of what is no called
a Turing machine. These simple abstract devices are one of the earliest and
most intuitive ways to make precise the intuitive idea of computability and the
underlying logic is closely connected to the later development of computers.

A Turing machine consits of an infinite one-dimensional tape divided into cells,
a movable read-write head with a specified starting position, and a table of
transition rules. (Figure 2) Each cell of the tape contains one symbol, either 0 or
1, and the head can move along the tape to scan one cell at a time and perform
three different activities:

18

Algorithmic Extension of Architecture

Jakob & MacFarlane: Restaurant Le Georges, Centre Georges Pompidou, Paris, France, 1999
topological deformation of regular grid structure

operative example

THEORY

 19

• READ: read the content of the cell,
• WRITE: change the content into the opposite, and
• MOVE: advance to the next cell to the right or left along the tape.

A table of transition rules serves as the program for the machine. Each such rule
is a quadruple <stateactual,symbol,action,statenext > which means if the machine
is in stateactual and the current cell contains symbol then take action MOVE or
WRITE and move into statenext. Thus, the transition rules are labeled as staten and
the execution of the program consits of the successive transition between one
state and another. Furthermore, the program terminates if it reaches a situation
in which there is not exactly one transition rule specified for execution. [Barker-
Plummer, 2005; Cooper, 2004:34-42]

Figure 2: visualization of Turing-machine

20

Algorithmic Extension of Architecture

Peter Cook & Colin Fournier: Kunsthaus, Graz, Austria, 2002-03
NURBS-modeling of skin

operative example

THEORY

 21

Turing machines are very basic but powerful devices. They are not physical
objects but mathematical ones and, despite theit simplicity, enable thought
experiments about the limits of mechanical computation because they can be
adapted to simulate the logic of any software that could possibly be constructed.
In other words, for every partial function f defined by a program p there exists a
Turing machine T with f(in) = T(in) for every input in e . (Figure 3)

Algorithmic perspective

Without exception, using a computer always means to activate an algorithmic
procedure as mediator between input and output. Therefore, the abstract model
of the Turing enables the shift of awareness from the machine towards the
principle represented by the machine. As Kalay has pointed out before, the mere
use of computers in architecture does not change the way of production. What
is needed is a conscious consideration of the machine in order to be able to
reinvent the design process in architecture and use the computer creatively. This
is, what the Turing model stands for. In addition, what is needed is a conscious
differentiation between computation and computerization.

“While computation is the procedure of calculating, i.e. determining
something by mathematical or logical methods, computerization is the
act of entering, processing, or storing information in a computer or a
computer system. Computerization is about automation, mechanization,

Figure 3: algorithmic description of program

22

Algorithmic Extension of Architecture

Peter Cook & Colin Fournier: Kunsthaus, Graz, Austria, 2002-03
NURBS-modeling of skin

operative example

THEORY

 23

digitization, and conversion. Generally, it involves the digitization of entities
or processes that are preconceived, predetermined, and well defined. In
contrast, computation is about the exploration of indeterminate, vague,
unclear, and often ill-defined processes; because of its exploratory
nature, computation aims at emulating or extending the human intellect.
It is about rationalization, reasoning, logic, algorithm, deduction, induction,
extrapolation, exploration, and estimation. In its manifold implications, it
involves problem solving, mental structures, cognition, simulation, and
rulebased intelligence, to name a few.” [Terzidis, 2006:xi]

Because of this very close relation to human endevours the question of
computation existed already long before there were any computers and is rooted
in mathematics of antiquity. To foster algorithmic thinking in architecture, therefore,
not only is a way to utilize computers in the design process productively but might
be the key concept to develop a critical theory of digital architecture. A first step
towards such a theorizing, therefore, would be a stocktaking of contemporary
architecture from an algorithmic perspecitive.

As a Turing machine every algorithm defines a partial function f on the natural
numbers with a table of transition rules <.,.,.,.> as functional description. The
domain of f that is the set of valid input is the parameter space Para e . The
image f(Para) of the parameter space is the set of possible variations Var e in
the output of the Turing machine. (Figure 4)

In an architectural design context, an element out e Var represents the coded
version of a form gradually generated in a digital environment, e.g. a CAD-
software. In other words, the abstract Turing-based machine model can be used
in theory to provide a formal algorithmic description of the morphogenetic process
of design. And it is this formalization of architectural thinking that will be used as

24

Algorithmic Extension of Architecture

Peter Eisenman: Chruch of the Year 2000, Rom, Italy, 1996 (competition)
morphing of regular grid into superimposed diagram and three-dimensional interpretation of result as
system of folding

parametric example

THEORY

 25

measure in order to achieve a first rough classification of the utilization of the
computer in contemporary design processes thereby focusing on the generation
of form.

Drafting and modelling as graphical computation

Today, the dominant use of computers in architectural design still is only as an
efficient tool of representation of form through drafting and modelling. Thereby,
within the realm of the peculiarities of the deployed CAD-software a digital model
of the architecture gets build up inductively using primary forms and a set of
different possibilites of modification of these forms.

In general, all the geometric information in a computer-aided environment is based
on the use of non-uniform rational Bezier splines (NURBS). [Piegl & Tiller, 2000] A
NURBS is a smooth curve from a startpoint A to an endpoint B defined through a
set of attracting control points Pi and corresponding weight functions wi, regulating
the degree of attraction. Thus, every NURBS is the graphic representation of an
output achieved as result of a computation based on the input of the startpoint,
endpoint, control points, and weight functions. That is, every production of a
NURBS is an algorithmic transformation of an input, controlled by mouse and
keyboard, into a graphic output. Therefore, it can be seen as an activation of

Figure 4: space of parameters and space of variation related to program

26

Algorithmic Extension of Architecture

Peter Eisenman: Chruch of the Year 2000, Rom, Italy, 1996 (competition)
morphing of regular grid into superimposed diagram and three-dimensional interpretation of result as
system of folding

parametric example

THEORY

 27

a specific Turing machine inherent to the used software that is modelling the
computation of the curve. (Figure 5)

Figure 5: program structure of NURBS-calculation

28

Algorithmic Extension of Architecture
parametric example

Nicholas Grimshaw and Partners: Internationl Terminal, Waterloo Station, London, UK, 1993
parametric defintion of truss geometry with dependency on breadth hx of railroad

THEORY

 29

This example shows that as tought experiment one can view the complete
CAD-software as a finite collection of Turing machines {T1

cad, .. , Tm
cad}, each

one mediating between possible inputs of the user and consequential graphical
outputs displayed on the screen. Thereby, every available tool defines a different
Turing machine Ti

cad. Because of this, the inductive process of drafting or
modelling architecture by means of CAD-software implies the successive use of
a finite amount of Turing machines Ti

cad and, hence, defines a unique sequence
of Turing machines (T1

proj, .. , Tn
proj) related specifically to the project. (Figure 6)

This concatenation of machines generates as a whole a Turing machine Tproj with
input as sum of all inputs, i.e. inproj = in1

proj … inn
proj, and the displayed final

model outproj = outn
proj as output.

This means, even the mere use of the computer for drafting or modelling of
architecture leads inevitable to an algorithmic description of the project. However,
this description is not perceivable because it is hidden by the applied software
and its ready-made geometric operations. Such an unconscious computation of
architecture prevents an exploration of the inherent space of parameters or of the
program itself in the realm of the design process.

Figure 6: Turing-model of drafting/modeling

30

Algorithmic Extension of Architecture

Bernhard Franken: Bubble, Frankfurt, Germany, 1999
form as metaball simulation of water drops

parametric example

THEORY

 31

On the contrary, drafting and modelling is the reduction of the parameter space
onto one fixed value, the specific input inproj, and with it the blinding out of possible
variations. It is a static description of form from the outside that is a description
of architecture based on ideas independent of the computers capabilities as
essential design tool. That is why such use can be seen as purely representative.
It is architectural design crafted in a traditional way, a waste of the possibilities
inherent to the use of the computer in design.

From the representative to the algorithmic

Therefore, the threshold to digital design in architecture can be defined as the
conscious overcoming of the traditional level of representation in the use of the
computer as design tool. Thereby, looking at the development in architecture
since the 1990s one can distinguish three degrees of computational awareness in
this process of acquisition of the machine into architectural design: the operative,
the parametric, and the algorithmic. (Figure 7)

On the operative level, the computer gets used for modelling in a pre-defined
geometric way. That is implemented geometric operations of the software in
use are explored in an architectural context in order to deform the classical
formal language of architecure by means of controlled transformations. What
distinguishes the operative from the representative is the type of geometric
operations used for modeling, for example the shifting and shearing of a box in
the UFA Cinema by Coop Himmelb(l)au (p.12) or the concatenation of circular
segments in the process of meodeling the frame structure of the water pavilion
by Lars Spuybroek. (p.14) Without a computer, such operations were not used
widely in architecture because of the inherent increase of geometric complexity
which limits the ability to handle them in an efficient way by means of drawing as

32

Algorithmic Extension of Architecture

Greg Lynn: Port Authority Gateway, New York, USA, 1995 (competition)
visualization of database on density of traffic over time as animated particle; transformation of phase
portrait into structural system of canopy

parametric example

THEORY

 33

well as imagination. In the case of the operative, it is the computational power of
the computer that opens up a new field of geometric possibilities in modeling. This
gets obvious in the architectural use of the curvilinear language of contemporary
CAD-softwares, the NURBS-geometry, like in the Kunsthaus Graz by Peter
Cook and Colin Fournier (p.20/22) or the design of the restaurant in the Centre
Pompidou by Jakob & MacFarlane. (p.16/18)

Figure 7: levels of algorithmic awareness

34

Algorithmic Extension of Architecture

Greg Lynn: Port Authority Gateway, New York, USA, 1995 (competition)
visualization of database on density of traffic over time as animated particle; transformation of phase
portrait into structural system of canopy

parametric example

THEORY

 35

Especially the closer examination of the NURBS-geometry has fostered the
parametric awareness and has helped to shift interest away from drafting and
modeling towards a more mathematically based view on architectural design. This
has to do with the fact that every NURBS object is defined within a local space
of parameter given by control points and weights. These datas are not fixed but
can be changed throughout the whole design process. That is why “parametrics
can provide for a powerful conception of architectural form by describing a range
of possibilities, replacing in the process stable with variable, singularity with
multiplicity.” [Kolarevic, 2003:17] The design of thirty-six dimensionally different
but identically configured three-pin bowstring arches for the International Terminal
of Waterloo Station in London by Nicholas Grimshaw and Partners is an example
for this parametrized variation. (p.28)

But by far the most popular way of using parameters in contemporary architecture
is the utilization of time as primal parameter. Time-based techniques as morphing,
keyframe animation, kinematics, force fields, or particle systems are widely used
in the design process nowadays and are all based on the idea of gradually
deforming a given NURBS-geometry by changing the parameters over time.
Examples for this approach are the pavilion by Bernhard Franken (p.30), Greg
Lynn’s project for the Port Authority Gateway (p.32/34), or the Aquatic Center by
Zaha Hadid. (p.36)

As the Turing model shows, the strength of the computer as device is the flexible
series of commands and logical procedures that can instantly transform it from
one function to another. However, on the operative as well as one the parametric
level, architects are forced to conduct the process of design using fixed Turing
machines originally developed to solve the problems faced in different areas of
use, for example in aircraft design or film-making. [Silver, 2006:9] Therefore,
over the last years many architects have turned to the inhouse creation of code

36

Algorithmic Extension of Architecture

Zaha Hadid: Aquatic Center, London, UK, 2005-09
geometry of roof out of simulation of behaviour of fluid by means of animated particles

parametric example

THEORY

 37

appropriate to their specific needs. Only this step towards the algorithmic decription
of the design made projects like the British Museum Great Court Roof (p.38/40)
by Norman Foster and Partners, the Serpentine Gallery Pavilion (p.42/44) by
Toyo Ito, the architecture for the Olympic Games in Beijing by PTW (p.46/48) and
Herzog & de Meuron (p.50/52), or Ocean North’s design for the Music and Art
Center (p.54/56) possible. [Szalapaj, 2005:60-84; Balmond, 2004]

Towards a conceptual framework

Of course, the above description of a line of development in architecture with
respect to the acquisition of the algorithmic into the design process has to be
seen as a very rough first sketch. However, already this simplified picture of
recent history in architecture elucidates the usefulness of the framework as a
point of departure for a more detailed analysis of the usage of the computer in
contemporary architectural design.

Figure 8: comparison of Turing-based model with Oxman’s classification

38

Algorithmic Extension of Architecture
algorithmic example

Norman Foster and Partners: Great Court Roof, British Museum, London, UK, 1999-2000
geometrically defined parametric model based on algebraic overlay of three surfaces; shape optimi-
sation by method of relaxation

THEORY

 39

Similar approaches to the digital can be found in the work of Oxman and her
attempt to formulate a theoretical basis of design in the ‘first digital age’. [Oxman,
2006] Her study is based on the nature of interactivity and type of control of design
processes and results in a comparable subdivision, namely „five paradigmatic
classes of digital design models: CAD models, formation models, generative
models, performance models, and integrated compound models“. [Oxman,
2006:246]

Not by accident, there are some similarities to the suggested conceptual
frameworks. (Figure 8) The approach of the present work is founded on the degree
of conscious perception of the abstract Turing-model for computers. And it is the
resulting awareness of the algorithmic nature of this model that gets reflected in
the level of interactivity and the degree of complexity of the processes controlled
by the machine. That is why the representative level of the Turing-based model
is congruent in substance to the descriptive CAD-model of Oxman. Furthermore,
both approaches locate the threshold of digital design right above this level of
interaction. [Oxman, 2006:260-262]

In the further subdivision of the field of digital design, however, there are some
noticeable differences. Oxman’s second class of formation models consists of
three sub-classes: the topological formation models, the associative design
formation models, and the motion-based formation models. For her all these
sub-classes are characterized by a comparable level of “interaction with an
enabling digital technique rather than with an explicit representational structure
as in the CAD model.” [Oxman, 2006:250] With respect to the above discussion
this comparability is not justified. In the Turing-based model, therefore, the class
of formation models got seperated into the two disjunct levels of operative and
parametric awareness instead.

40

Algorithmic Extension of Architecture
algorithmic example

Norman Foster and Partners: Great Court Roof, British Museum, London, UK, 1999-2000
geometrically defined parametric model based on algebraic overlay of three surfaces; shape optimi-
sation by method of relaxation

THEORY

 41

Oxman’s third class of generative design models gets defined by the provision of
complex computational mechanisms that deal with the emergence of forms that
is this class is formed by methods of algorithmic morphogenesis. But only the
sub-class of grammatical transformative design models is related to the process
of form-making whereas the sub-class of evolutionary design models is not.

The difference between these two classes gets clearer if one looks at the Turing-
model of computation. In that model, the morphogenetic process is nothing else
than the transformation of the parameter inproj into the visible form outproj by means
of an algorithmic description Tproj. Furthermore, every algorithm Tproj generates a
space Var of possible morphogenetic variations according to the range of the
space of parameter Para. Evolutionary methods like genetic algorithms use this
space of variation as search space. That is they are methods of optimisation that
act as feedback-loop on the process of morphogenesis in order to scan the space
Var for the best possible solution. (Figure 9) In other words, such methods are not
part of the process of form-generation itself but are methods of evaluation of the
produced form based on criteria of fitness.

Figure 9: optimisation as external process

42

Algorithmic Extension of Architecture
algorithmic example

Toyo Ito: Serpentine Gallery Pavilion, London, UK, 2002
complex weave out of repeated nesting of rotated squares and extension into field of intersecting
lines

THEORY

 43

Therefore, evolutionary methods should not be part of a class that tries to deal
with the emergence of form but of a new class of methods of evaluation, instead.
This new class should also contain the class of performance models because
they act as methods of evalution outside of the morphogenetic process as well.

Conclusion

The discussion shows that the Turing-based model and the resulting division of
the field of digital design into the operative, the parametric, and the algorithmic
level can be seen as an attempt to separate the morphogenetic process in
architecture from other computational methods. At the same time it establishes
a framework of comparison for further investigations into formal methods of
digital design and a possibility of integration of these methods into a theoretical
discourse of architecture.

For instance, already this rough framework of algorithmic consciousnes illustrates
that the equation of the digital in architectural design with the so-called architecture
of blobs, an argument often used in the reflection of contemporary architecture,
is not adequate because it would mean a limitation of the digital to the operative
level.

Hence, an intensive and critical discussion of the computer and its influence
onto the design process and architectural thinking is indispensable. On the one
hand, the goal has to be an understanding of the new phenomena related to the
digital and the identification of the potential of development of the discipline of
architecture. [Hensel et al, 2006; Kubo & Ferré, 2004; Spuybroek, 2004; Rahim,
2006] On the other hand, the digital will allow a fresh look on themes that have
been inherent to the architectural debate for a long time like the relation between
design and its production. [Aish, 2005; Fritz, 2006; Sheil, 2005]

44

Algorithmic Extension of Architecture
algorithmic example

Toyo Ito: Serpentine Gallery Pavilion, London, UK, 2002
complex weave out of repeated nesting of rotated squares and extension into field of intersecting
lines

THEORY

 45

The threshold between digital and representative processes of generation of
architectural form, therefore, is not something that separates. Rather, the digital
way of designing and exploring architecture should be perceived as a extended
form of expression that is interwoven with the non-digital in manifold ways. A
weave that waits to be discovered!

46

Algorithmic Extension of Architecture
algorithmic example

PTW: National Swimming Center, Beijing, China, 2003-06
space frame as combinatorial arrangement of three different nodes and four different members into
effective sub-division of three dimensional space similar to fundamental arrangement of organic cells
or formation of soap bubbles

THEORY

 47

Notes

1. Former research into the design process has favored the view onto architecture from
within and has been centered on the analysis and formal modeling of behavioral, procedural
and the cognitive activities of designing. [Cross, 1984; Lawson, 1997; Mitchell, 1990]

2. A possible coding of data is the interpretation of the finite sequence a0a1…an as digits in
a binary representation (.)2 of the number, that is (a0a1…an)2 = a02

0 + a12
1 + … + an2

n.

3. In order to work properly, every program p needs valid input data that is not every number
in e is acceptable as argument. Therefore, p cannot be a total function in general.

4. Hilbert believed that all mathematics could be precisely axiomatized. He thought that
once this was done there would be an algorithm that would take as input any mathematical
statement, and, after a finite number of steps, decide whether the statement was true or
false. Restricted onto first-order logic this problem is known as the Entscheidungsproblem.
It is this problem that gave impetus for the drive to codify the notion of computability.

5. This belief is known as the Curch-Turing Thesis and is uniformly accepted by
mathematicians. For more details see [Copeland:2002]

6. The first recorded algorithm is that of Euclid for finding the greatest common divisor of
two integers from around 300 BC. And the word ‘algorithm’ is derived from the name of the
mathematician al-Khwarizmi, who worked at the court of Mamun in Baghdad around the
early part of the 9th century.

7. In architecture the computer gets applied not only in the form-generative process of
design but in other context as well, e.g. process managment and collaboration (Building
Information Modeling, BIM) or simulation of building performance. However, such
applications are not in the focus of this examination. For more on this use of the computer
in architetcure see [Kalay, 2004; Schodek, 2005; Steel, 2001]

48

Algorithmic Extension of Architecture
algorithmic example

PTW: National Swimming Center, Beijing, China, 2003-06
space frame as combinatorial arrangement of three different nodes and four different members into
effective sub-division of three dimensional space similar to fundamental arrangement of organic cells
or formation of soap bubbles

THEORY

 49

8. NURBS are nearly ubiquitous for computer-aided design (CAD), manufacturing (CAM),
and engineering (CAE) and are part of numerous industry wide used standards, such as
IGES, STEP, ACIS, and PHIGS.

9. The ability of most of the contemporary CAD-softwares to extend its functionality by
plug-Ins, small programs defined by the user himself, makes clear that this point of view
is not an unrealistic one.

10. From a computational point of view, NURBS provide for an efficient data representation
of geometric forms, using a minimum amount of data (control points, weights, degree) and
relatively few steps for shape computation, which is why most of today’s digital modeling
programs rely on NURBS as a computational method for constructing complex surface
models. [Kolarevic, 2003:15]

11. It is this shift from the operative to the time-based parametric that Greg Lynn pursues
in his well-known book Animate Form. [Lynn, 1999]

12. See [De Luca & Nardini, 2002] for more details on these and further techniques.

13. In general, a critical review of the potential of evolutionary algorithms for architectural
design is indispensable. [Leach, 2006] Such methods lead often to a mapping of
architectural quality onto an easy determinable numerical value and with it to a revival
of a purely performative and functionalist view onto architecture. „Perhaps attention to
performance will contribute to a new understanding of the ways buildings are imagined,
made and experienced. But this new understanding will not result from the development
and deployment of new techniques alone. The continued dedication to a technical
interpretation of performance will lead to nothing more than a uncritical reaffirmation of
old-style functionalist thinking – a kind of thinking that is both reductive and inadequate
because it recognizes only what it can predict.” [Leatherbarrow, 2004:7]

14. The integrated compound model is only the combination of the other models of digital
design and can be excluded in this comparison.

50

Algorithmic Extension of Architecture
algorithmic example

Herzog & de Meuron: National Stadium, Beijing, China, 2002-07
surface of roof as complex spatial grid-like formation based on optimisation with respect of in-between
space

THEORY

 51

15. An example for this limitation of digital architecture to the operative methode of
topological deformation is Picon’s statement that „until now, however, this debate for or
against digital architecture has essentially focused on forms, on the value to be attributed
to the ‘blobs’ and other ‘folds’ that one finds associated with signatures as different as
Greg Lynn, UN Studio and Foreign Office.” [Picon, 2004:59] With it he clearly refers to the
journal Architectural Design and its special issue Folding in Architecture. This publication
was edited by Greg Lynn and had an enormous influence onto the architectural debate in
the 1990s. For a critical review of it see [Carpo, 2004]. A collection of build blob-architecture
can be found in [Schmal, 2001].

52

Algorithmic Extension of Architecture
algorithmic example

Herzog & de Meuron: National Stadium, Beijing, China, 2002-07
surface of roof as complex spatial grid-like formation based on optimisation with respect of in-between
space

THEORY

 53

Literature

Aish, Robert: From Intuition to Precision, AA Files, 52 (2005), 62-63

Balmond, Cecil: Geometry, Algorithm, Pattern in Leach, Neil / Turnball, David / Williams,
Chris (ed.): Digital Tectonics, John Wiley, Chichester, USA, 2004

Barker-Plummer, David: Turing Machines, in Edward N. Zalta (ed.): The Stanford
Encyclopedia of Philosophy (Spring 2005 Edition), http://plato.stanford.edu/archives/
spr2005/entries/turing-machine/

Carpo, Mario: Ten years of folding, in Folding in architecture, Revised Edition, John
Wiley, Chichester, UK, 2004, 14-19

Cooper, S. Barry: Computability theory, Chapman & Hall/CRC, Boca Raton, USA, 2004

Copeland, B. Jack: The Church-Turing Thesis, in Edward N. Zalta (ed.): The Stanford
Encyclopedia of Philosophy (Fall 2002 Edition), http://plato.stanford.edu/archives/
fall2002/entries/church-turing/

Cross, Nigel (ed.): Developments in Design Methodology, John Wiley, Chichester, UK,
1984

De Luca, Francesco & Nardini, Marco: Avant-garde Techniques in Contemporary Design,
Birkhäuser, Basel, Switzerland, 2002

Fritz, Oliver: Handwerk im Computerzeitalter, Archithese, 4 (2006), 26-31

Hensel, Michael / Menges, Achim / Weinstock, Michael: Techniques and Technologies in
Morphogenetic Design, Architectural Design, 76:2 (2006)

54

Algorithmic Extension of Architecture
algorithmic example

Ocean North: Music and Art Center, Jyväskylä, Finland, 2004-05 (design study, phase 2)
rule-based growth process of lattice system informed by performance requirements

THEORY

 55

Kalay, Yehuda E.: Architecture’s New Media – Principles, Theories, and Methods of
Computer-Aided Design, MIT Press, Cambridge, USA, 2004

Kolarevic, Branko (ed.): Architecture in the digital age: design and manufacturing, Taylor
& Francis, Abingdon, USA, 2003

Kubo, Michael & Ferré, Albert (ed.): Phylogenesis: foa’s ark, Actar, Barcelona, Spain,
2004

Lawson, Bryan: How designers think, Architectural Press, London, UK, 1997

Leach, Neil: Digital Morphogenese, Archithese, 4 (2006), 44-49

Leatherbarrow, David: Architecture’s unscripted performance, in Kolarevic, Branko &
Malkawi, Ali (ed.): Performative Architecture: Beyond Instrumentality, Taylor & Francis,
Abingdon, UK, 2004, 6-19

Lynn, Greg: Animate Form, Princeton Architectural Press, New York, USA, 1999

Mitchell, William J.: The logic of architecture: design computation and cognition, MIT
Press, Cambridge, USA, 1990

Oxman, Rivka: Theory and design in the first digital age, Design Studies, 27(2006):229-
265

Picon, Antoine: Digital architecture and the poetics of computation, in Metamorph: Focus,
exhibition catalog, 9. International Architecture Exhibition, Venice, Italy, 2004, 58-69

Piegl, Les & Tiller, Wayne: The NURBS Book. Monographs in Visual Communications,
Springer, Berlin, Germany, 2000

56

Algorithmic Extension of Architecture

Ocean North: Music and Art Center, Jyväskylä, Finland, 2004-05 (design study, phase 2)
rule-based growth process of lattice system informed by performance requirements

algorithmic example

THEORY

 57

Rahim, Ali: Catalytic Formations – Architecture and Digital Design, Taylor & Francis,
Abingdon, UK, 2006

Schmal, Peter C.: Blobmeister: erste gebaute Projekte, Birkhäuser, Basel, Switzerland,
2001

Schodek, Daniel et al.: Digital design and manufacturing: CAD/CAM technologies in
architecture, John Wiley, Hoboken, USA, 2005

Sheil, Bob: Transgression from drawing to making, arq, 1 (2005), 21-32

Silver, Mike: Towards a Programming Culture in the Design Arts, Architectural Design,
76:4, 5-11
Spuybroek, Lars: NOX, Thames & Hudson, New York, USA, 2004

Steel, James: Architecture and Computer: action and reaction in the digital revolution,
Laurence King, London, UK, 2001

Szalapaj, Peter: Contemporary Architecture and the Digital Design Process, Architectural
Press, Oxford, UK, 2005

Terzidis, Kostas: Algorithmic Architecture, Architectural Press, Oxford, UK, 2006

Turing, Alan: On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society, 2nd Series,
42(1936):230-265

Roof Design

Algorithmic Extension of Architecture

60

ROOF DESIGN

61

The roof as an architectural element expresses a basic human need for protec-
tion against inclement environmental conditions. Over the centuries a number
of typical roof types have been established with the resulting forms as efficient
solutions to cover a building and protect its interior against wind and precipita-
tion. Especially the ability of the roof for drainage has influenced this evolution
of forms. The placement of the different sloped planes of the roof space can be
seen as the visible trace of an optimised flow of water towards the drain. In other
words, the roof can be modelled as a system of cells, the roof tiles, arranged in
height. This spatial arrangement gets defined by the distance of the cell to the
nearest drain. ...

Algorithmic Extension of Architecture

62

... It is this approach to the form of a roof that was be explored in more detail. That
is the exploration of form according to a given set of rules. It enabled an extension
of the well-known family of roof types. Already the above generation of a double
pitched roof and a hipped roof showed that variations in this rule-based approach
depend on the number of cells to drain and their location. ...

ROOF DESIGN

63

... This first step towards the design of a roof, therefore, generalized the existing
typology in such a way that the number of sinks, i.e. cells to drain, and their place-
ment in the cellular system could be varied. Already the reduction of sinks along
the boundary changed the arrangement of the cells. However, it was the location
of the sinks that had the most potential to influnce the development of form. ...

Algorithmic Extension of Architecture

64

... In order to understand the development of form better the size of the cells were
rescaled according to the distance of the cell to the nearest sink. Furthermore,
the flow of water was made more visible by connecting cells respectively. In addi-
tion, the slope of the roof got rescaled by a logarithmic growth function. ...

ROOF DESIGN

65

Algorithmic Extension of Architecture

66

... The way cells were connected had a major influence on the further develop-
ment because it led to a separation of the roof into components. To make this
roof components buildable an adequate supporting structure was necessary.
Therefore, a further exploration of the form was suspended in favour of physical
experminents with the goal to find an appropriate structural systems. ...

ROOF DESIGN

67

... Motivated by a diamond-lattice framing for arched forms developed by Fried-
rich Zollinger in 1905 an investigation into cellular structures started. ...

Algorithmic Extension of Architecture

68

... This resulted in the development of stiffened cells with varying height accord-
ing to their location in the final structure. The prefabricated cells were connected
to each other leading to physical model of the supporting roof structure. ...

ROOF DESIGN

69

... This model proved very stable and the vaccuum forming of the roof surface
increased the stability further. ...

Algorithmic Extension of Architecture

70

ROOF DESIGN

71

... Going back to the design process a further generalization of the system of
rules was introduced. The restriction of the flow to the shortest path limited the
space of variation. However, what is necessary for the functionality of the roof is
not an optimised flow of water but the establishment of an arbitray way for the
water to flow. ...

Algorithmic Extension of Architecture

72

... Based on natural patterns of flow the rules were changed in such a way that a
randomly generated system of rivers grew into the cellular structure that insured
the drainage of water from every cell to one of the pre-defined sinks. ...

ROOF DESIGN

73

Algorithmic Extension of Architecture

74

... Along this river system every cell received a position in space with respect to
the distance to the sink it got attracted to which produced a logical notation for
the form of the roof space. ...

ROOF DESIGN

75

... The water cascade produced by the roof for a school yard in Zurich demon-
strates the principle of the notation very well: Squared roof plates are directed
and arranged in height in such a way that the water runs from roof to roof until it
drops down. ...

Algorithmic Extension of Architecture

76

... Instead of dividing up the roof space into components the notation was used
to deform the basic grid into a landscape formed by flow of water. This way a
statically more stable roof structure could be achieved. ...

ROOF DESIGN

77

... For every of the produced variations a number of tools were programmed that
allowed the deformation and adaptation of the roof surface. The first one was a
stretching of the space in all three spatial directions. ...

Algorithmic Extension of Architecture

78

.... The second one was the ability to change the dimension of the structural grid
that is the height of the elements and their thickness. ...

ROOF DESIGN

79

... A further tool was the degree of covering according to the stepness of the cell.
This way a roof tiles could be changed into an opening. ...

Algorithmic Extension of Architecture

80

... Last but not least a random factor could be added to give the grid a more or-
ganic impression. ...

ROOF DESIGN

81

... All these tools were arranged in the third window. The other windows were
used to define the grid size, the number of sinks and their location. In addition,
the deformed roof surface and its supporting structures as well as the logical
structure of the roof were displayed. ...

Algorithmic Extension of Architecture

82

ROOF DESIGN

83

... Topview and supporting structure of an example based on a 15x10-grid with
four sinks. ...

Algorithmic Extension of Architecture

84

... This example makes clear that such a roof can easily be used for more than
just as a covering of spaces. The roof itself produces spatial differentiation and
varying degrees of openness and, therefore, has the potential to be considered
as an architectural project. That is the process of generalization has extended the
functionality of the roof and starts to dissolve the traditional boundary between
classical elements of architectural producation, i.e. floor, wall, ceiling. ...

ROOF DESIGN

85

... This kind of formal exploration, the extracting and generalizing of rules of for-
mation, by means of scripting shifts the process of design into the proximity of
experiments common to the natural sciences. That is the digital opens up the
possibility of incorporating scientific methods into the discipline of architecture.
This helps to establish a non-metaphoric relation between science and architec-
tural design and with it a new approach to architectural knowledge. ...

Algorithmic Extension of Architecture

86

ROOF DESIGN

87

... A further line of design experimentation was established by deforming the ba-
sic arrangement of the grid by means of methods of morphing and overlay with
other functions like trigonometric functions or hyperbolic ones. These functions
are not compatible with the produced flow of water. Therefore, the type of cover-
ing was changed into leave-like sunshading. ...

Algorithmic Extension of Architecture

88

... This led to a different expression of the roof pending between a perforated
wall and a tree-like covering.

ROOF DESIGN

89

Appendix: MEL-Script

Algorithmic Extension of Architecture

92

MEL-Script of Roof Design

global float $posX[];
global float $posY[];
global float $posZ[];
global int $attractor[];
global int $attractTo[];
global int $connectTo[];
global float $distance[];
global float $moveFlag[];
//--
// calculate row iPos and column jPos
// out of array-position n
//--
proc int jPos (int $n, int $m){
 int $ni = floor($n/$m);
 return $ni;
}
proc int iPos (int $n, int $m){
 int $ni = $n-floor($n/$m)*$m;
 return $ni;
}
//---------------------------------------
// calculate possible start point
// for new flow
//---------------------------------------
proc int CalcStartPoint(){
 global float $distance[];
 int $sPoint = 0;
 int $counter = 0;
 int $lengthArray = size($distance);
 if ($lengthArray > 0){
 float $availablePoint[];
 for ($i=0; $i<$lengthArray; $i++){
 if ($distance[$i] == -1){

APPENDIX

93

 $availablePoint[$counter]=$i;
 $counter = $counter+1;
 }
 }
 $sPoint = floor(rand(0,$counter));
 $sPoint = $availablePoint[$sPoint];
 }
 return $sPoint;
}
//--------------------
// calculate path
// of new flow
//--------------------
proc CalcPath (int $sPoint, int $g_i){
 global float $distance[];
 global float $posY[];
 global int $attractTo[];
 global int $connectTo[];
 int $flag = 0;
 int $g_j = size($distance)/$g_i;
 int $s_i = iPos($sPoint,$g_i);
 int $s_j = jPos($sPoint,$g_i);
 if (($s_j < ($g_j-1)) && (($distance[$sPoint+$g_i] >= 0) && ($distance[$sPoint] < 0))){
 $distance[$sPoint] = $distance[$sPoint+$g_i]+1;
 $attractTo[$sPoint] = $attractTo[$sPoint+$g_i];
 $connectTo[$sPoint] = $sPoint+$g_i;
 $posY[$sPoint] = $posY[$sPoint+$g_i]+rand(0,1);
 $flag = 1;
 }
 if (($flag == 0) && (($s_i > 0) && (($distance[$sPoint-1] >= 0) && ($distance[$sPoint] < 0)))){
 $distance[$sPoint] = $distance[$sPoint-1]+1;
 $attractTo[$sPoint] = $attractTo[$sPoint-1];
 $connectTo[$sPoint] = $sPoint-1;
 $posY[$sPoint] = $posY[$sPoint-1]+rand(0,1);
 $flag = 1;

Algorithmic Extension of Architecture

94

 }
 if (($flag == 0) && (($s_j > 0) && (($distance[$sPoint-$g_i] >= 0) && ($distance[$sPoint] < 0)))){
 $distance[$sPoint] = $distance[$sPoint-$g_i]+1;
 $attractTo[$sPoint] = $attractTo[$sPoint-$g_i];
 $connectTo[$sPoint] = $sPoint-$g_i;
 $posY[$sPoint] = $posY[$sPoint-$g_i]+rand(0,1);
 $flag = 1;
 }
 if (($flag == 0) && (($s_i < ($g_i-1)) && (($distance[$sPoint+1] >= 0) && ($distance[$sPoint] < 0)))){
 $distance[$sPoint] = $distance[$sPoint+1]+1;
 $attractTo[$sPoint] = $attractTo[$sPoint+1];
 $connectTo[$sPoint] = $sPoint+1;
 $posY[$sPoint] = $posY[$sPoint+1]+rand(0,1);
 }
}
//----------------------
// calculate height
//----------------------
proc float CalcMoveUp(float $x){
 float $xUp = 0;
 int $nx = floor($x);
 for ($k=0; $k<$nx; $k++){
 float $kMod = (float) $k;
 $xUp += (3/($kMod+1));
 }
 return $xUp;
}
//--
// open first window:
// input of data of grid
//--
if (`window -q -exists inputBasicGridData` == 1){
 deleteUI inputBasicGridData;
}

APPENDIX

95

if (`window -q -exists inputParameterSurface` == 1){
 deleteUI inputParameterSurface;
}
if (`window -q -exists inputParameter` == 1){
 deleteUI inputParameter;
}
window -title «Window 1: Basic Grid Data» -wh 400 300 inputBasicGridData;
 columnLayout -adjustableColumn true;
 text « «;
 intSliderGrp
 -label «cells in i-direction»
 -field true
 -minValue 1
 -maxValue 30
 -value 10
 iDirection;
 intSliderGrp
 -label «cells in j-direction»
 -field true
 -minValue 1
 -maxValue 30
 -value 10
 jDirection;
 intSliderGrp
 -label «number of attractors»
 -field true
 -minValue 1
 -maxValue 8
 -value 1
 noAttractor;
 text « «;
 button -label «Window 2» -width 30 -height 20 -command inputParameter;
showWindow inputBasicGridData;

Algorithmic Extension of Architecture

96

//--
// read grid data
//--
proc inputParameter(){
 int $grid_i = `intSliderGrp -q -value iDirection`;
 int $grid_j = `intSliderGrp -q -value jDirection`;
 int $numberAttractor = `intSliderGrp -q -value noAttractor`;
 //---------------------------------
 // open second window:
 // input of data of attractor
 //---------------------------------
 if (`window -q -exists inputParameter` == 1){
 deleteUI inputParameter;
 }
 window -title «Window 2: Parameter of Attractor» -wh 400 300 inputParameter;
 columnLayout -adjustableColumn true;
 text « «;
 for ($k=1; $k<=$numberAttractor; $k++){
 string $nameX = «i_attractor» + $k;
 string $nameY = «h_attractor» + $k;
 string $nameZ = «j_attractor» + $k;
 string $textX = «attractor « + $k +»: i-direction»;
 string $textY = «attractor « + $k +»: h-direction»;
 string $textZ = «attractor « + $k +»: j-direction»;
 float $attHeight = (float) (($grid_i+$grid_j)/2);
 intSliderGrp
 -label $textX
 -field true
 -minValue 1
 -maxValue $grid_i
 -value 1
 $nameX;
 intSliderGrp
 -label $textZ
 -field true

APPENDIX

97

 -minValue 1
 -maxValue $grid_j
 -value 1
 $nameZ;
 floatSliderGrp
 -label $textY
 -field true
 -minValue 0
 -maxValue $attHeight
 -value 0
 $nameY;
 text « «;
 }
 button -label «Window 3» -width 30 -height 20 -command calcGrid;
 showWindow inputParameter;
}
//-----------------
// initialze grid
//-----------------
proc calcGrid(){
 int $grid_i = `intSliderGrp -q -value iDirection`;
 int $grid_j = `intSliderGrp -q -value jDirection`;
 int $numberAttractor = `intSliderGrp -q -value noAttractor`;
 global float $posX[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $posX[$n] = 0;
 }
 global float $posY[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $posY[$n] = -1;
 }
 global float $posZ[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $posZ[$n] = 0;
 }

Algorithmic Extension of Architecture

98

 global float $distance[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $distance[$n] = -1;
 }
 global float $moveFlag[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $moveFlag[$n] = 1;
 }
 global int $attractTo[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $attractTo[$n] = 0;
 }
 global int $connectTo[];
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $connectTo[$n] = 0;
 }
 int $index = 0;
 global int $attractor[];
 for ($i=0; $i<(2*$numberAttractor); $i){
 int $k = floor($i/2)+1;
 string $nameAttX = «i_attractor» + $k;
 string $nameAttY = «h_attractor» + $k;
 string $nameAttZ = «j_attractor» + $k;
 $attractor[$i]=`intSliderGrp -q -value $nameAttX`-1;
 $attractor[$i+1]=`intSliderGrp -q -value $nameAttZ`-1;
 $index = $attractor[$i]+$attractor[$i+1]*$grid_i;
 $attractTo[$index]=$index;
 $connectTo[$index]=$index;
 $distance[$index] = 0;
 $moveFlag[$index] = 0;
 $posY[$index] = `floatSliderGrp -q -value $nameAttY`;
 $i = $i+2;
 }
 int $loopNumber = 20*$grid_i*$grid_j;

APPENDIX

99

 for ($i=0; $i<$loopNumber; $i++){
 int $startPoint;
 $startPoint = CalcStartPoint();
 CalcPath($startPoint,$grid_i);
 }
 paraSurface;
}
//--------------------------
// open third window:
// input of parameter
//--------------------------
proc paraSurface (){
 if (`window -q -exists inputParameterSurface` == 1){
 deleteUI inputParameterSurface;
 }
 window -title «Window 3: Parameter of Surfcae» -wh 400 300 inputParameterSurface;
 columnLayout -adjustableColumn true;
 text « «;
 floatSliderGrp
 -label «size in i-direction»
 -field true
 -minValue 2
 -maxValue 50
 -value 20
 p_sizeX;
 floatSliderGrp
 -label «size in j-direction»
 -field true
 -minValue 2
 -maxValue 50
 -value 20
 p_sizeZ;
 text « «;
 floatSliderGrp
 -label «stretching factor»

Algorithmic Extension of Architecture

100

 -field true
 -minValue 0
 -maxValue 5
 -value 1
 p_s;
 floatSliderGrp
 -label «heigth»
 -field true
 -minValue 0.1
 -maxValue 3
 -value 1
 p_t;
 floatSliderGrp
 -label «depth»
 -field true
 -minValue 0
 -maxValue 2
 -value 0.1
 p_d;
 floatSliderGrp
 -label «random factor»
 -field true
 -minValue 0
 -maxValue 1
 -value 0
 p_distort;
 text « «;
 checkBox
 -label «show covering»
 -value true
 -width 80
 -align «left»
 p_cov;
 intSliderGrp
 -label «closing factor»

APPENDIX

101

 -field true
 -minValue 0
 -maxValue 20
 -value 3
 p_c;
 text « «;
 button -label «apply» -width 30 -height 20 -command showGrid;
 showWindow inputParameterSurface;
}
//-------------------
// output of grid
//-------------------
proc showGrid (){
 select -all;
 delete;
 global float $posX[];
 global float $posY[];
 global float $posZ[];
 global int $attractor[];
 global int $attractTo[];
 global int $connectTo[];
 global float $distance[];
 global float $moveFlag[];
 float $posXCopy[];
 float $posYCopy[];
 float $posZCopy[];
 float $posYShadow[];
 float $shift[];
 int $grid_i = `intSliderGrp -q -value iDirection`;
 int $grid_j = `intSliderGrp -q -value jDirection`;
 int $numberAttractor = `intSliderGrp -q -value noAttractor`;
 float $sizeX = `floatSliderGrp -q -value p_sizeX`;
 float $sizeZ = `floatSliderGrp -q -value p_sizeZ`;
 float $relX = $sizeX/(float) $grid_i;
 float $relZ = $sizeZ/(float) $grid_j;

Algorithmic Extension of Architecture

102

 float $stretching = `floatSliderGrp -q -value p_s`;
 float $closing = `intSliderGrp -q -value p_c`;
 float $distort = `floatSliderGrp -q -value p_distort`;
 float $thickness = `floatSliderGrp -q -value p_t`;
 float $gSize = `floatSliderGrp -q -value p_d`;
 float $gShift = $gSize/2;
 for ($n=0; $n<($grid_i*$grid_j); $n++){
 $posYShadow[$n] = $posY[$n];
 }
 float $maxH = 0;
 float $maxD = 0;
 for ($i=0; $i<size($posY); $i++){
 if ($posY[$i]>$maxH){
 $maxH = $posY[$i];
 }
 if ($distance[$i]>$maxD){
 $maxD = (float) $distance[$i];
 }
 }
 float $relH = $thickness/($maxD+1);
 float $i_pos;
 float $j_pos;
 for ($i=0; $i<size($distance); $i++){
 $i_pos = (float) iPos($i,$grid_i);
 $j_pos = (float) jPos($i,$grid_i);
 $posX[$i] = $i_pos;
 $posZ[$i] = $j_pos;
 if ($moveFlag[$i] == 1){
 $posXCopy[$i] = $posX[$i]*$relX+$distort*rand(-1,1)*$relX;
 $posZCopy[$i] = $posZ[$i]*$relZ+$distort*rand(-1,1)*$relZ;
 } else {
 $posXCopy[$i] = $posX[$i]*$relX;
 $posZCopy[$i] = $posZ[$i]*$relZ;
 }
 float $distortHeight = 0;

APPENDIX

103

 if ($distance[$i] > 0){
 float $lowDistort = -1/$distance[$i];
 float $heighDistort = 1/($distance[$i]+1);
 $distortHeight = $distort*rand($lowDistort,$heighDistort);
 }
 float $relHeight = $posY[$i] - $posY[$attractTo[$i]];
 $posYCopy[$i] = $posY[$attractTo[$i]]+($relHeight+$distortHeight)*$stretching;
 float $relDistance = (float) $distance[$i]*$relH;
 $posYShadow[$i] = $posYCopy[$i]-($thickness-$relDistance);
 $shift[$i]=$gShift-3*$distance[$i]*$gShift/(4*$maxD);
 }
 // ------------
 for ($i=0; $i<size($distance); $i++){
 float $cubeHeigth = $posYCopy[$i]-$posYShadow[$i];
 polyCube -width (2*$shift[$i]) -height $cubeHeigth -depth (2*$shift[$i]);
 move -r $posXCopy[$i] ($posYCopy[$i]-$cubeHeigth/2) $posZCopy[$i];
 }
 for ($i=0; $i<size($distance); $i++){
 int $g_i = iPos($i,$grid_i);
 int $g_j = jPos($i,$grid_i);
 if ($g_i < ($grid_i-1)){
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]-$shift[$i])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]-$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]-$shift[$i])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])

Algorithmic Extension of Architecture

104

 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]-$shift[$i])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]) ;
 select -clear;
 }
 if ($g_j < ($grid_j-1)){
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]-$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i]-$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i]-$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]-
 $shift[$i+$grid_i])
 -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]-

APPENDIX

105

 $shift[$i+$grid_i])
 -p ($posXCopy[$i]-$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]) ;
 select -clear;
 }
 // ------------
 if (`checkBox -q -value p_cov` == 1){
 if (($g_i < ($grid_i-1)) && ($g_j < ($grid_j-1))){
 int $d1 = abs($distance[$i]-$distance[$i+1]);
 int $d2 = abs($distance[$i]-$distance[$i+$grid_i]);
 int $d3 = abs($distance[$i]-$distance[$i+$grid_i+1]);
 int $flowDiff = max($d1,$d2);
 $flowDiff = max($flowDiff,$d3);
 if ($flowDiff <= $closing){
 polyCreateFacet
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
 -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
 -p ($posXCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]) $posYCopy[$i+$grid_i+1]
 ($posZCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]);
 polyCreateFacet
 -p ($posXCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]) $posYCopy[$i+$grid_i+1]
 ($posZCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1])
 -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i]
 ($posZCopy[$i+$grid_i]-$shift[$i+$grid_i])
 -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
 select -clear;
 }
 }
 float $bX = 0;
 float $bY = 0;
 float $bZ = 0;
 float $bXnext = 0;
 float $bYnext = 0;
 float $bZnext = 0;
 if (($g_j == 0) && ($g_i < ($grid_i-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i+1])/2;

Algorithmic Extension of Architecture

106

 $bY = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i+1])/2-0.5;
 polyCreateFacet
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
 -p $bX $bY $bZ;
 if ($g_i < ($grid_i-2)){
 $bXnext = ($posXCopy[$i+1]+$posXCopy[$i+2])/2;
 $bYnext = ($posYCopy[$i+1]+$posYCopy[$i+2])/2+0.25;
 $bZnext = ($posZCopy[$i+1]+$posZCopy[$i+2])/2-0.5;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
 -p $bXnext $bYnext $bZnext;
 }
 select -clear;
 }
 if (($g_j == ($grid_j-1)) && ($g_i < ($grid_i-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i+1])/2;
 $bY = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i+1])/2+0.5;
 polyCreateFacet
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
 -p $bX $bY $bZ;
 if ($g_i < ($grid_i-2)){
 $bXnext = ($posXCopy[$i+1]+$posXCopy[$i+2])/2;
 $bYnext = ($posYCopy[$i+1]+$posYCopy[$i+2])/2+0.25;
 $bZnext = ($posZCopy[$i+1]+$posZCopy[$i+2])/2+0.5;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
 -p $bXnext $bYnext $bZnext;
 }
 select -clear;

APPENDIX

107

 }
 if (($g_i == 0) && ($g_j < ($grid_j-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2-0.5;
 $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
 polyCreateFacet
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
 -p $bX $bY $bZ;
 if ($g_j < ($grid_j-2)){
 $bXnext = ($posXCopy[$i+$grid_i]+$posXCopy[$i+2*$grid_i])/2-0.5;
 $bYnext = ($posYCopy[$i+$grid_i]+$posYCopy[$i+2*$grid_i])/2+0.25;
 $bZnext = ($posZCopy[$i+$grid_i]+$posZCopy[$i+2*$grid_i])/2;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
 -p $bXnext $bYnext $bZnext;
 }
 select -clear;
 }
 if (($g_i == ($grid_i-1)) && ($g_j < ($grid_j-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2+0.5;
 $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
 polyCreateFacet
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
 -p $bX $bY $bZ;
 if ($g_j < ($grid_j-2)){
 $bXnext = ($posXCopy[$i+$grid_i]+$posXCopy[$i+2*$grid_i])/2+0.5;
 $bYnext = ($posYCopy[$i+$grid_i]+$posYCopy[$i+2*$grid_i])/2+0.25;
 $bZnext = ($posZCopy[$i+$grid_i]+$posZCopy[$i+2*$grid_i])/2;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]

Algorithmic Extension of Architecture

108

 -p $bXnext $bYnext $bZnext;
 }
 select -clear;
 }
 if (($g_i == 0) && ($g_j == 0)){
 $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2-0.5;
 $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
 $bXnext = ($posXCopy[$i]+$posXCopy[$i+1])/2;
 $bYnext = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
 $bZnext = ($posZCopy[$i]+$posZCopy[$i+1])/2-0.5;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
 polyCreateFacet
 -p $bXnext $bYnext $bZnext
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
 select -clear;
 }
 if (($g_i == ($grid_i-1)) && ($g_j == 0)){
 $bX = ($posXCopy[$i]+$posXCopy[$i-1])/2;
 $bY = ($posYCopy[$i]+$posYCopy[$i-1])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i-1])/2-0.5;
 $bXnext = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2+0.5;
 $bYnext = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
 $bZnext = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
 polyCreateFacet
 -p $bXnext $bYnext $bZnext
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]

APPENDIX

109

 -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
 select -clear;
 }
 if (($g_i == 0) && ($g_j == ($grid_j-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i-$grid_i])/2-0.5;
 $bY = ($posYCopy[$i]+$posYCopy[$i-$grid_i])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i-$grid_i])/2;
 $bXnext = ($posXCopy[$i]+$posXCopy[$i+1])/2;
 $bYnext = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
 $bZnext = ($posZCopy[$i]+$posZCopy[$i+1])/2+0.5;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
 polyCreateFacet
 -p $bXnext $bYnext $bZnext
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
 select -clear;
 }
 if (($g_i == ($grid_i-1)) && ($g_j == ($grid_j-1))){
 $bX = ($posXCopy[$i]+$posXCopy[$i-$grid_i])/2+0.5;
 $bY = ($posYCopy[$i]+$posYCopy[$i-$grid_i])/2+0.25;
 $bZ = ($posZCopy[$i]+$posZCopy[$i-$grid_i])/2;
 $bXnext = ($posXCopy[$i]+$posXCopy[$i-1])/2;
 $bYnext = ($posYCopy[$i]+$posYCopy[$i-1])/2+0.25;
 $bZnext = ($posZCopy[$i]+$posZCopy[$i-1])/2+0.5;
 polyCreateFacet
 -p $bX $bY $bZ
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
 polyCreateFacet
 -p $bXnext $bYnext $bZnext
 -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
 -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);

Algorithmic Extension of Architecture

110

 select -clear;
 }
 }
}
float $moveX = $sizeX-$relX+2;
float $moveZ = $sizeZ-$relZ+2;
polyCube -w $moveX -h $thickness -d $moveZ;
move -r (($moveX-2)/2) (-1*$thickness/2) (($moveZ-2)/2);
select -clear;
// -----------
for ($i=0; $i<(2*$numberAttractor); $i){
 int $index = $attractor[$i]+$attractor[$i+1]*$grid_i;
 sphere
 -pivot $posX[$index] $posY[$index] $posZ[$index]
 -radius 0.4;
 move -r ($sizeX+10) 0 0;
 select -clear;
 $i=$i+2;
}
for ($i=0; $i<size($distance); $i++){
 int $iConnect = $connectTo[$i];
 if ($iConnect != $i){
 sphere
 -pivot $posX[$i] $posY[$i] $posZ[$i]
 -radius 0.2;
 move -r ($sizeX+10) 0 0;
 sphere
 -pivot $posX[$iConnect] $posY[$iConnect] $posZ[$iConnect]
 -radius 0.2;
 move -r ($sizeX+10) 0 0;
 polyCreateFacet
 -p $posX[$i] $posY[$i] $posZ[$i]
 -p $posX[$iConnect] $posY[$iConnect] $posZ[$iConnect]
 -p ($posX[$iConnect]-0.05) ($posY[$iConnect]-0.05) ($posZ[$iConnect]-0.05)
 -p ($posX[$i]-0.05) ($posY[$i]-0.05) ($posZ[$i]-0.05);

APPENDIX

111

 move -r ($sizeX+10) 0 0;
 select -clear;
 }
}
}

