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Abstract

Over the past decade an increasing amount of architects have readdressed formal 
issues. This development is closely related to the availability of powerful computers 
and software that enable the use of computational mechanisms for the explora-
tion of formal systems. However, up to now the theoretical foundations of this new 
digital methods in  design are still unformulated. The present work, therefore, tries 
to formulate an abstract conceptual framework for the evaluation of different digital 
approaches to architectural design. This framework is based on the Turing machine 
as an abstract model for the computer and it results in an algorithmic description of 
every task performed by the machine. As a consequence, every form generated in 
a digital design process is bound to an algorithmic description of its own morpho-
genetic process. The level of awareness of this relation is then used to formulate a 
conceptual framework of digital design. Furthermore, the framework is compared 
to a similar approach to the digital in architectural design by Oxman. Both studies 
show, that the digital way of designing and exploring architecture has to be seen as 
an extended form of expression that is interwoven with the non-digital in manifold 
ways. Finally, the design of a roof structure gets used to examine the algorithmic ap-
proach to architecture in more detail.





Theory
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Coop Himmelb(l)au: UFA Cinema, Dresden, Germany, 1996-98
shifting and shearing as manageable geometric operations   

operative example
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In 1963 Ivan Sutherland’s Sketchpad program, the first interactive graphical design 
tool, demonstrated that computers could be used for drafting and modeling, not 
only for number crunching, and already by the mid-1990s architectural practice 
without graphics software had become unimaginable. However, in spite of the 
fact that computer-aided design technology has been adopted almost universally 
as the predominant means of production in architectural practice, its use merely 
represents the commercialization of the simplest and most obvious application 
of information technology in architectural design - the automation of traditional 
processes like drafting, modeling, and communicating - without adding value to 
the practice and its products. [Kalay, 2004:xvi] As a result, most architectural 
design solutions are still crafted manually, much the same way they have been 
for the past 500 years. 

“Beyond the fact that over the past decade a new generation of avante-
garde architects is pushing digital technology to its limits, so far it has had 
relatively little qualitative impact on the profession of architecture at large. 
In general, information technology has improved the efficiency of designing 
buildings, when in fact it has the potential to reinvent the architectural 
design process itself.” [Kalay, 2004:xvi]

In the present work the goal is to formulate an abstract theoretical framework for 
digital design in order to activate this potential for the reinvention of the design 
process by means of the computer. Up to now, the theoretical foundations of 
digital design are still unformulated with the basic concepts bound up in ideological 
positions. [Oxman, 2006:239] In avoidance of such struggle, this paper is based 
on the simple observation that the possible reinvention of architectural thinking in 
the digital realm is essentially bound to the computer as its principal design tool. 
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Lars Spuybroek: Water-experience pavilion, Neeltje Jans, Netherlands, 1993-97
modeling of beam structure as concatenation of circular segments  
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In general, every tool has a specific way it can be used and this peculiar form of 
usage influences the perception of the user and his way of thinking. That is why 
the computer itself should be the starting point of an investigation into the digital 
design of architecture. Using methods from computability theory a view onto the 
discipline from the outside will be achieved that enables a better understanding 
of the way the design process will be influenced by the digital. Furthermore, this 
distancing from the discipline of architecture avoids any ideological positioning 
inherent to every discussion from within.

Computability

The versatility of a computer is built on the universalitiy of its main principle: a 
machine, the hardware, manipulating data accordings to a set of instructions, the 
software. In this general setting every data takes the form of a finite sequence of 
bits and that is why it can be coded as a natural number. Hence, a program p can 
be viewed as partial function on the set of natural numbers  with output out e  
as result of a computation of the input in e  that is p(in) = out. (Figure 1)

It is this abstract setting for a computing device that facilitates the principal 
question of computability, i.e. for which (partial) function f exists a program p such 
that f(in) = p(in) for every valid input in e . Surprisingly, this question existed 
already before the invention of modern digital computers. In the 1930’s various 
mathematicians like Alonzo Church, Kurt Gödel or Alan Turing started to develop 
precise, independent definitions of what it means to be computable in order to 

Figure 1: functional description of program
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Jakob & MacFarlane: Restaurant Le Georges, Centre Georges Pompidou, Paris, France, 1999
topological deformation of regular grid structure 

operative example
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answer a mathematical problem stated by David Hilbert. 

Intuitively, a task is computable if one can specify a finite sequence of instructions 
which when followed will result in the completion of the task. This intuition must 
be made precise by defining the capabilities of the machine that is to carry 
out the instructions, because machines with different capabilities may be able 
to complete different sets of instructions and, therefore, may result in different 
classes of computable functions. However, it is a remarkable mathematical fact 
that all the different precise definitions of computability lead to the same class 
of functions. In a practical sense this means that if one can give an intuitively 
convincing description of an algorithm for computing a function, than one can find 
an effective procedure in one of the precise definitions as well.

Turing machine

In 1936 Alan Turing published a paper on Hilbert’s problem. [Turing, 1936] A by-
product of this mathematical work was the first machine-based model of what it 
means for a function to be computable, and the description of what is no called 
a Turing machine. These simple abstract devices are one of the earliest and 
most intuitive ways to make precise the intuitive idea of computability and the 
underlying logic is closely connected to the later development of computers. 

A Turing machine consits of an infinite one-dimensional tape divided into cells, 
a movable read-write head with a specified starting position, and a table of 
transition rules. (Figure 2) Each cell of the tape contains one symbol, either 0 or 
1, and the head can move along the tape to scan one cell at a time and perform 
three different activities:
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Jakob & MacFarlane: Restaurant Le Georges, Centre Georges Pompidou, Paris, France, 1999
topological deformation of regular grid structure

operative example
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• READ: read the content of the cell,
• WRITE: change the content into the opposite, and
• MOVE: advance to the next cell to the right or left along the tape.

A table of transition rules serves as the program for the machine. Each such rule 
is a quadruple <stateactual,symbol,action,statenext > which means if the machine 
is in stateactual and the current cell contains symbol then take action MOVE or 
WRITE and move into statenext. Thus, the transition rules are labeled as staten and 
the execution of the program consits of the successive transition between one 
state and another. Furthermore, the program terminates if it reaches a situation 
in which there is not exactly one transition rule specified for execution. [Barker-
Plummer, 2005; Cooper, 2004:34-42]

Figure 2: visualization of Turing-machine
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Peter Cook & Colin Fournier: Kunsthaus, Graz, Austria, 2002-03
NURBS-modeling of skin 

operative example
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Turing machines are very basic but powerful devices. They are not physical 
objects but mathematical ones and, despite theit simplicity, enable thought 
experiments about the limits of mechanical computation because they can be 
adapted to simulate the logic of any software that could possibly be constructed.  
In other words, for every partial function f defined by a program p there exists a 
Turing machine T with f(in) = T(in) for every input in e . (Figure 3)

Algorithmic perspective

Without exception, using a computer always means to activate an algorithmic 
procedure as mediator between input and output. Therefore, the abstract model 
of the Turing enables the shift of awareness from the machine towards the 
principle represented by the machine. As Kalay has pointed out before, the mere 
use of computers in architecture does not change the way of production. What 
is needed is a conscious consideration of the machine in order to be able to 
reinvent the design process in architecture and use the computer creatively. This 
is, what the Turing model stands for. In addition, what is needed is a conscious 
differentiation between computation and computerization.

“While computation is the procedure of calculating, i.e. determining 
something by mathematical or logical methods, computerization is the 
act of entering, processing, or storing information in a computer or a 
computer system. Computerization is about automation, mechanization, 

Figure 3: algorithmic description of program
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Peter Cook & Colin Fournier: Kunsthaus, Graz, Austria, 2002-03
NURBS-modeling of skin 

operative example
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digitization, and conversion. Generally, it involves the digitization of entities 
or processes that are preconceived, predetermined, and well defined. In 
contrast, computation is about the exploration of indeterminate, vague, 
unclear, and often ill-defined processes; because of its exploratory 
nature, computation aims at emulating or extending the human intellect. 
It is about rationalization, reasoning, logic, algorithm, deduction, induction, 
extrapolation, exploration, and estimation. In its manifold implications, it 
involves problem solving, mental structures, cognition, simulation, and 
rulebased intelligence, to name a few.” [Terzidis, 2006:xi]

Because of this very close relation to human endevours the question of 
computation existed already long before there were any computers and is rooted 
in mathematics of antiquity. To foster algorithmic thinking in architecture, therefore, 
not only is a way to utilize computers in the design process productively but might 
be the key concept to develop a critical theory of digital architecture. A first step 
towards such a theorizing, therefore, would be a stocktaking of contemporary 
architecture from an algorithmic perspecitive.

As a Turing machine every algorithm defines a partial function f on the natural 
numbers with a table of transition rules <.,.,.,.> as functional description. The 
domain of f that is the set of valid input is the parameter space Para e . The 
image f(Para) of the parameter space is the set of possible variations Var e  in 
the output of the Turing machine. (Figure 4) 

In an architectural design context, an element out e Var represents the coded 
version of a form gradually generated in a digital environment, e.g. a CAD-
software. In other words, the abstract Turing-based machine model can be used 
in theory to provide a formal algorithmic description of the morphogenetic process 
of design. And it is this formalization of architectural thinking that will be used as 
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Peter Eisenman: Chruch of the Year 2000, Rom, Italy, 1996 (competition)
morphing of regular grid into superimposed diagram and three-dimensional interpretation of result as 
system of folding

parametric example
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measure in order to achieve a first rough classification of the utilization of the 
computer in contemporary design processes thereby focusing on the generation 
of form. 
 

Drafting and modelling as graphical computation

Today, the dominant use of computers in architectural design still is only as an 
efficient tool of representation of form through drafting and modelling. Thereby, 
within the realm of the peculiarities of the deployed CAD-software a digital model 
of the architecture gets build up inductively using primary forms and a set of 
different possibilites of modification of these forms. 

In general, all the geometric information in a computer-aided environment is based 
on the use of non-uniform rational Bezier splines (NURBS). [Piegl & Tiller, 2000] A 
NURBS is a smooth curve from a startpoint A to an endpoint B defined through a 
set of attracting control points Pi and corresponding weight functions wi, regulating 
the degree of attraction. Thus, every NURBS is the graphic representation of an 
output achieved as result of a computation based on the input of the startpoint, 
endpoint, control points, and weight functions. That is, every production of a 
NURBS is an algorithmic transformation of an input, controlled by mouse and 
keyboard, into a graphic output. Therefore, it can be seen as an activation of 

Figure 4: space of parameters and space of variation related to program        
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Peter Eisenman: Chruch of the Year 2000, Rom, Italy, 1996 (competition)
morphing of regular grid into superimposed diagram and three-dimensional interpretation of result as 
system of folding

parametric example
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a specific Turing machine inherent to the used software that is modelling the 
computation of the curve. (Figure 5)

Figure 5: program structure of NURBS-calculation



28

Algorithmic Extension of Architecture
parametric example

Nicholas Grimshaw and Partners: Internationl Terminal, Waterloo Station, London, UK, 1993
parametric defintion of truss geometry with dependency on breadth hx of railroad 
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This example shows that as tought experiment one can view the complete 
CAD-software as a finite collection of Turing machines {T1

cad, .. , Tm
cad}, each 

one mediating between possible inputs of the user and consequential graphical 
outputs displayed on the screen. Thereby, every available tool defines a different 
Turing machine Ti

cad. Because of this, the inductive process of drafting or 
modelling architecture by means of CAD-software implies the successive use of 
a finite amount of Turing machines Ti

cad and, hence, defines a unique sequence 
of Turing machines (T1

proj, .. , Tn
proj) related specifically to the project. (Figure 6)  

This concatenation of machines generates as a whole a Turing machine Tproj with 
input as sum of all inputs, i.e. inproj = in1

proj  …  inn
proj, and the displayed final 

model outproj = outn
proj  as output. 

This means, even the mere use of the computer for drafting or modelling of 
architecture leads inevitable to an algorithmic description of the project. However, 
this description is not perceivable because it is hidden by the applied software 
and its ready-made geometric operations. Such an unconscious computation of 
architecture prevents an exploration of the inherent space of parameters or of the 
program itself in the realm of the design process. 

Figure 6: Turing-model of drafting/modeling
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Bernhard Franken: Bubble, Frankfurt, Germany, 1999
form as metaball simulation of water drops 

parametric example
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On the contrary, drafting and modelling is the reduction of the parameter space 
onto one fixed value, the specific input inproj, and with it the blinding out of possible 
variations. It is a static description of form from the outside that is a description 
of architecture based on ideas independent of the computers capabilities as 
essential design tool. That is why such use can be seen as purely representative. 
It is architectural design crafted in a traditional way, a waste of the possibilities 
inherent to the use of the computer in design.

From the representative to the algorithmic

Therefore, the threshold to digital design in architecture can be defined as the 
conscious overcoming of the traditional level of representation in the use of the 
computer as design tool.  Thereby, looking at the development in architecture 
since the 1990s one can distinguish three degrees of computational awareness in 
this process of acquisition of the machine into architectural design: the operative, 
the parametric, and the algorithmic. (Figure 7)

On the operative level, the computer gets used for modelling in a pre-defined 
geometric way. That is implemented geometric operations of the software in 
use are explored in an architectural context in order to deform the classical 
formal language of architecure by means of controlled transformations. What 
distinguishes the operative from the representative is the type of geometric 
operations used for modeling, for  example the shifting and shearing of a box in 
the UFA Cinema by Coop Himmelb(l)au (p.12) or the concatenation of circular 
segments in the process of meodeling the frame structure of the water pavilion 
by Lars Spuybroek. (p.14) Without a computer, such operations were not used 
widely in architecture because of the inherent increase of geometric complexity 
which limits the ability to handle them in an efficient way by means of drawing as 
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Greg Lynn: Port Authority Gateway, New York, USA, 1995 (competition)
visualization of database on density of traffic over time as animated particle; transformation of phase 
portrait into structural system of canopy

parametric example
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well as imagination. In the case of the operative, it is the computational power of 
the computer that opens up a new field of geometric possibilities in modeling. This 
gets obvious in the architectural use of the curvilinear language of contemporary 
CAD-softwares, the NURBS-geometry, like in the Kunsthaus Graz by Peter 
Cook  and Colin Fournier (p.20/22) or the design of the restaurant in the Centre 
Pompidou by Jakob & MacFarlane. (p.16/18)   

Figure 7: levels of algorithmic awareness
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Greg Lynn: Port Authority Gateway, New York, USA, 1995 (competition)
visualization of database on density of traffic over time as animated particle; transformation of phase 
portrait into structural system of canopy

parametric example
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Especially the closer examination of the NURBS-geometry has fostered the 
parametric awareness and has helped to shift interest away from drafting and 
modeling towards a more mathematically based view on architectural design. This 
has to do with the fact that every NURBS object is defined within a local space 
of parameter given by control points and weights. These datas are not fixed but 
can be changed throughout the whole design process. That is why “parametrics 
can provide for a powerful conception of architectural form by describing a range 
of possibilities, replacing in the process stable with variable, singularity with 
multiplicity.” [Kolarevic, 2003:17] The design of thirty-six dimensionally different 
but identically configured three-pin bowstring arches for the International Terminal 
of Waterloo Station in London by Nicholas Grimshaw and Partners is an example 
for this parametrized variation. (p.28)

But by far the most popular way of using parameters in contemporary architecture 
is the utilization of time as primal parameter. Time-based techniques as morphing, 
keyframe animation, kinematics, force fields, or particle systems are widely used 
in the design process nowadays and are all based on the idea of gradually 
deforming a given NURBS-geometry by changing the parameters over time. 
Examples for this approach are the pavilion by Bernhard Franken (p.30), Greg 
Lynn’s project for the Port Authority Gateway (p.32/34), or the Aquatic Center by 
Zaha Hadid. (p.36)  

As the Turing model shows, the strength of the computer as device is the flexible 
series of commands and logical procedures that can instantly transform it from 
one function to another. However, on the operative as well as one the parametric 
level, architects are forced to conduct the process of design using fixed Turing 
machines originally developed to solve the problems faced in different areas of 
use, for example in aircraft design or film-making. [Silver, 2006:9] Therefore, 
over the last years many architects have turned to the inhouse creation of code 
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Zaha Hadid: Aquatic Center, London, UK, 2005-09
geometry of roof out of simulation of behaviour of fluid by means of animated particles

parametric example
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appropriate to their specific needs. Only this step towards the algorithmic decription 
of the design made projects like the British Museum Great Court Roof (p.38/40) 
by Norman Foster and Partners, the Serpentine Gallery Pavilion (p.42/44) by 
Toyo Ito, the  architecture for the Olympic Games in Beijing by PTW (p.46/48) and 
Herzog & de Meuron (p.50/52), or Ocean North’s design for the Music and Art 
Center (p.54/56) possible. [Szalapaj, 2005:60-84; Balmond, 2004]

Towards a conceptual framework

Of course, the above description of a line of development in architecture with 
respect to the acquisition of the algorithmic into the design process has to be 
seen as a very rough first sketch. However, already this simplified picture of 
recent history in architecture elucidates the usefulness of the framework as a 
point of departure for a more detailed analysis of the usage of the computer in 
contemporary architectural design. 

Figure 8: comparison of Turing-based model with Oxman’s classification
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Norman Foster and Partners: Great Court Roof, British Museum, London, UK, 1999-2000 
geometrically defined parametric model based on algebraic overlay of three surfaces; shape optimi-
sation by method of relaxation
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Similar approaches to the digital can be found in the work of Oxman and her 
attempt to formulate a theoretical basis of design in the ‘first digital age’. [Oxman, 
2006] Her study is based on the nature of interactivity and type of control of design 
processes and results in a comparable subdivision, namely „five paradigmatic 
classes of digital design models: CAD models, formation models, generative 
models, performance models, and integrated compound models“.  [Oxman, 
2006:246] 

Not by accident, there are some similarities to the suggested conceptual 
frameworks. (Figure 8) The approach of the present work is founded on the degree 
of conscious perception of the abstract Turing-model for computers. And it is the 
resulting awareness of the algorithmic nature of this model that gets reflected in 
the level of interactivity and the degree of complexity of the processes controlled 
by the machine. That is why the representative level of the Turing-based model 
is congruent in substance to the descriptive CAD-model of Oxman. Furthermore, 
both approaches locate the threshold of digital design right above this level of 
interaction. [Oxman, 2006:260-262]    

In the further subdivision of the field of digital design, however, there are some 
noticeable differences. Oxman’s second class of formation models consists of 
three sub-classes: the topological formation models, the associative design 
formation models, and the motion-based formation models. For her all these 
sub-classes are characterized by a comparable level of “interaction with an 
enabling digital technique rather than with an explicit representational structure 
as in the CAD model.” [Oxman, 2006:250] With respect to the above discussion 
this comparability is not justified. In the Turing-based model, therefore, the class 
of formation models got seperated into the two disjunct levels of operative and 
parametric awareness instead.



40

Algorithmic Extension of Architecture
algorithmic example

Norman Foster and Partners: Great Court Roof, British Museum, London, UK, 1999-2000 
geometrically defined parametric model based on algebraic overlay of three surfaces; shape optimi-
sation by method of relaxation
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Oxman’s third class of generative design models gets defined by the provision of 
complex computational mechanisms that deal with the emergence of forms that 
is this class is formed by methods of algorithmic morphogenesis. But only the 
sub-class of grammatical transformative design models is related to the process 
of form-making whereas the sub-class of evolutionary design models is not. 

The difference between these two classes gets clearer if one looks at the Turing-
model of computation. In that model, the morphogenetic process is nothing else 
than the transformation of the parameter inproj into the visible form outproj by means 
of an algorithmic description Tproj. Furthermore, every algorithm Tproj generates a 
space Var of possible morphogenetic variations according to the range of the 
space of parameter Para. Evolutionary methods like genetic algorithms use this 
space of variation as search space. That is they are methods of optimisation that 
act as feedback-loop on the process of morphogenesis in order to scan the space 
Var for the best possible solution. (Figure 9) In other words, such methods are not 
part of the process of form-generation itself but are methods of evaluation of the 
produced form based on criteria of fitness.

Figure 9: optimisation as external process
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algorithmic example

Toyo Ito: Serpentine Gallery Pavilion, London, UK, 2002 
complex weave out of repeated nesting of rotated squares and extension into field of intersecting 
lines  
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Therefore, evolutionary methods should not be part of a class that tries to deal 
with the emergence of form but of a new class of methods of evaluation, instead. 
This new class should also contain the class of performance models because 
they act as methods of evalution outside of the morphogenetic process as well.  

Conclusion

The discussion shows that the Turing-based model and the resulting division of 
the field of digital design into the operative, the parametric, and the algorithmic 
level can be seen as an attempt to separate the morphogenetic process in 
architecture from other computational methods. At the same time it establishes 
a framework of comparison for further investigations into formal methods of 
digital design and a possibility of integration of these methods into a theoretical 
discourse of architecture. 

For instance, already this rough framework of algorithmic consciousnes illustrates 
that the equation of the digital in architectural design with the so-called architecture 
of blobs, an argument often used in the reflection of contemporary architecture, 
is not adequate because it would mean a limitation of the digital to the operative 
level.     

Hence, an intensive and critical discussion of the computer and its influence 
onto the design process and architectural thinking is indispensable. On the one 
hand, the goal has to be an understanding of the new phenomena related to the 
digital and the identification of the potential of development of the discipline of 
architecture. [Hensel et al, 2006; Kubo & Ferré, 2004; Spuybroek, 2004; Rahim, 
2006]  On the other hand, the digital will allow a fresh look on themes that have 
been inherent to the architectural debate for a long time like the relation between 
design and its production. [Aish, 2005; Fritz, 2006; Sheil, 2005] 
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Toyo Ito: Serpentine Gallery Pavilion, London, UK, 2002 
complex weave out of repeated nesting of rotated squares and extension into field of intersecting 
lines  
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The threshold between digital and representative processes of generation of 
architectural form, therefore, is not something that separates. Rather, the digital 
way of designing and exploring architecture should be perceived as a extended 
form of expression that is interwoven with the non-digital in manifold ways. A 
weave that waits to be discovered!
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algorithmic example

PTW: National Swimming Center, Beijing, China, 2003-06
space frame as combinatorial arrangement of three different nodes and four different members into 
effective sub-division of three dimensional space similar to fundamental arrangement of organic cells 
or formation of soap bubbles  
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Notes

1. Former research into the design process has favored the view onto architecture from 
within and has been centered on the analysis and formal modeling of behavioral, procedural 
and the cognitive activities of designing. [Cross, 1984; Lawson, 1997; Mitchell, 1990]

2. A possible coding of data is the interpretation of the finite sequence a0a1…an as digits in 
a binary representation (.)2 of the number, that is (a0a1…an)2 = a02

0 + a12
1 + … + an2

n.

3. In order to work properly, every program p needs valid input data that is not every number 
in e  is acceptable as argument. Therefore, p cannot be a total function in general. 

4. Hilbert believed that all mathematics could be precisely axiomatized. He thought that 
once this was done there would be an algorithm that would take as input any mathematical 
statement, and, after a finite number of steps, decide whether the statement was true or 
false. Restricted onto first-order logic this problem is known as the Entscheidungsproblem. 
It is this problem that gave impetus for the drive to codify the notion of computability.

5. This belief is known as the Curch-Turing Thesis and is uniformly accepted by 
mathematicians. For more details see [Copeland:2002]

6. The first recorded algorithm is that of Euclid for finding the greatest common divisor of 
two integers from around 300 BC. And the word ‘algorithm’ is derived from the name of the 
mathematician al-Khwarizmi, who worked at the court of Mamun in Baghdad around the 
early part of the 9th century.

7. In architecture the computer gets applied not only in the form-generative process of 
design but in other context as well, e.g. process managment and collaboration (Building 
Information Modeling, BIM) or simulation of building performance. However, such 
applications are not in the focus of this examination. For more on this use of the computer 
in architetcure see [Kalay, 2004; Schodek, 2005; Steel, 2001]
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PTW: National Swimming Center, Beijing, China, 2003-06
space frame as combinatorial arrangement of three different nodes and four different members into 
effective sub-division of three dimensional space similar to fundamental arrangement of organic cells 
or formation of soap bubbles  
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8. NURBS are nearly ubiquitous for computer-aided design (CAD), manufacturing (CAM), 
and engineering (CAE) and are part of numerous industry wide used standards, such as 
IGES, STEP, ACIS, and PHIGS.

9. The ability of most of the contemporary CAD-softwares to extend its functionality by 
plug-Ins, small programs defined by the user himself, makes clear that this point of view 
is not an unrealistic one.

10. From a computational point of view, NURBS provide for an efficient data representation 
of geometric forms, using a minimum amount of data (control points, weights, degree) and 
relatively few steps for shape computation, which is why most of today’s digital modeling 
programs rely on NURBS as a computational method for constructing complex surface 
models. [Kolarevic, 2003:15]

11. It is this shift from the operative to the time-based parametric that Greg Lynn pursues 
in his well-known book Animate Form. [Lynn, 1999]

12. See [De Luca & Nardini, 2002] for more details on these and further techniques.

13. In general, a critical review of the potential of evolutionary algorithms for architectural 
design is indispensable. [Leach, 2006] Such methods lead often to a mapping of 
architectural quality onto an easy determinable numerical value and with it to a revival 
of a purely performative and functionalist view onto architecture. „Perhaps attention to 
performance will contribute to a new understanding of the ways buildings are imagined, 
made and experienced. But this new understanding will not result from the development 
and deployment of new techniques alone. The continued dedication to a technical 
interpretation of performance will lead to nothing more than a uncritical reaffirmation of 
old-style functionalist thinking – a kind of thinking that is both reductive and inadequate 
because it recognizes only what it can predict.” [Leatherbarrow,  2004:7]

14. The integrated compound model is only the combination of the other models of digital 
design and can be excluded in this comparison.
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algorithmic example

Herzog & de Meuron: National Stadium, Beijing, China, 2002-07
surface of roof as complex spatial grid-like formation based on optimisation with respect of in-between 
space    
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15. An example for this limitation of digital architecture to the operative methode of 
topological deformation is Picon’s statement that „until now, however, this debate for or 
against digital architecture has essentially focused on forms, on the value to be attributed 
to the ‘blobs’ and other ‘folds’ that one finds associated with signatures as different as 
Greg Lynn, UN Studio and Foreign Office.” [Picon, 2004:59] With it he clearly refers to the 
journal Architectural Design and its special issue Folding in Architecture. This publication 
was edited by Greg Lynn and had an enormous influence onto the architectural debate in 
the 1990s. For a critical review of it see [Carpo, 2004]. A collection of build blob-architecture 
can be found in [Schmal, 2001].
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algorithmic example

Herzog & de Meuron: National Stadium, Beijing, China, 2002-07
surface of roof as complex spatial grid-like formation based on optimisation with respect of in-between 
space    
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Ocean North: Music and Art Center, Jyväskylä, Finland, 2004-05 (design study, phase 2)
rule-based growth process of lattice system informed by performance requirements
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Ocean North: Music and Art Center, Jyväskylä, Finland, 2004-05 (design study, phase 2)
rule-based growth process of lattice system informed by performance requirements
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The roof as an architectural element expresses a basic human need for protec-
tion against inclement environmental conditions. Over the centuries a number 
of typical roof types have been established with the resulting forms as efficient 
solutions to cover a building and protect its interior against wind and precipita-
tion. Especially the ability of the roof for drainage has influenced this evolution 
of forms. The placement of the different sloped planes of the roof space can be 
seen as the visible trace of an optimised flow of water towards the drain. In other 
words, the roof can be modelled as a system of cells, the roof tiles, arranged in 
height. This spatial arrangement gets defined by the distance of the cell to the 
nearest drain. ... 
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... It is this approach to the form of a roof that was be explored in more detail. That 
is the exploration of form according to a given set of rules. It enabled an extension 
of the well-known family of roof types. Already the above generation of a double 
pitched roof and a hipped roof showed that variations in this rule-based approach 
depend on the number of cells to drain and their location. ...     
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... This first step towards the design of a roof, therefore, generalized the existing 
typology in such a way that the number of sinks, i.e. cells to drain, and their place-
ment in the cellular system could be varied. Already the reduction of sinks along 
the boundary changed the arrangement of the cells. However, it was the location 
of the sinks that had the most potential to influnce the development of form. ...  
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... In order to understand the development of form better the size of the cells were 
rescaled according to the distance of the cell to the nearest sink. Furthermore, 
the flow of water was made more visible by connecting cells respectively. In addi-
tion, the slope of the roof got rescaled by a logarithmic growth function. ...
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... The way cells were connected had a major influence on the further develop-
ment because it led to a separation of the roof into components. To make this 
roof components buildable an adequate supporting structure was necessary. 
Therefore, a further exploration of the form was suspended in favour of physical 
experminents with the goal to find an appropriate structural systems. ...  
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... Motivated by a diamond-lattice framing for arched forms developed by Fried-
rich Zollinger in 1905 an investigation into cellular structures started. ... 
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... This resulted in the development of stiffened cells with varying height accord-
ing to their location in the final structure. The prefabricated cells were connected 
to each other leading to physical model of the supporting roof structure. ...
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... This model proved very stable and the vaccuum forming of the roof surface 
increased the stability further. ...
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... Going back to the design process a further generalization of the system of 
rules was introduced. The restriction of the flow to the shortest path limited the 
space of variation. However, what is necessary for the functionality of the roof is 
not an optimised flow of water but the establishment of an arbitray way for the 
water to flow. ...
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... Based on natural patterns of flow the rules were changed in such a way that a 
randomly generated system of rivers grew into the cellular structure that insured 
the drainage of water from every cell to one of the pre-defined sinks. ...
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... Along this river system every cell received a position in space with respect to 
the distance to the sink it got attracted to which produced a logical notation for 
the form of the roof space. ...
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... The water cascade produced by the roof for a school yard in Zurich demon-
strates the principle of the notation very well: Squared roof plates are directed 
and arranged in height in such a way that the water runs from roof to roof until it 
drops down. ... 
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... Instead of dividing up the roof space into components the notation was used 
to deform the basic grid into a landscape formed by flow of water. This way a 
statically more stable roof structure could be achieved. ... 
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... For every of the produced variations a number of tools were programmed that 
allowed the deformation and adaptation of the roof surface. The first one was a 
stretching of the space in all three spatial directions. ...  
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.... The second one was the ability to change the dimension of the structural grid 
that is the height of the elements and their thickness. ...
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... A further tool was the degree of covering according to the stepness of the cell. 
This way a roof tiles could be changed into an opening. ...
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... Last but not least a random factor could be added to give the grid a more or-
ganic impression. ...
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... All these tools were arranged in the third window. The other windows were 
used to define the grid size, the number of sinks and their location. In addition, 
the deformed roof surface and its supporting structures as well as the logical 
structure of the roof were displayed. ...
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... Topview and supporting structure of an example based on a 15x10-grid with 
four sinks. ...
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... This example makes clear that such a roof can easily be used for more than 
just as a covering of spaces. The roof itself produces spatial differentiation and 
varying degrees of openness and, therefore, has the potential to be considered 
as an architectural project. That is the process of generalization has extended the 
functionality of the roof and starts to dissolve the traditional boundary between 
classical elements of architectural producation, i.e. floor, wall, ceiling. ...
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... This kind of formal exploration, the extracting and generalizing of rules of for-
mation, by means of scripting shifts the process of design into the proximity of 
experiments common to the natural sciences. That is the digital opens up the 
possibility of incorporating scientific methods into the discipline of architecture. 
This helps to establish a non-metaphoric relation between science and architec-
tural design and with it a new approach to architectural knowledge. ... 
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... A further line of design experimentation was established by deforming the ba-
sic arrangement of the grid by means of methods of morphing and overlay with 
other functions like trigonometric functions or hyperbolic ones. These functions 
are not compatible with the produced flow of water. Therefore, the type of cover-
ing was changed into leave-like sunshading. ...
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... This led to a different expression of the roof pending between a perforated 
wall and a tree-like covering.
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MEL-Script of Roof Design 

global float $posX[];
global float $posY[];
global float $posZ[];
global int $attractor[];
global int $attractTo[];
global int $connectTo[];
global float $distance[];
global float $moveFlag[];
//------------------------------------------------
// calculate row iPos and column jPos
// out of array-position n
//------------------------------------------------
proc int jPos (int $n, int $m){
  int $ni = floor($n/$m);
  return $ni;
}
proc int iPos (int $n, int $m){
  int $ni = $n-floor($n/$m)*$m;
  return $ni;
}
//---------------------------------------
// calculate possible start point
// for new flow
//---------------------------------------
proc int CalcStartPoint(){
  global float $distance[];
  int $sPoint = 0;
  int $counter = 0;
  int $lengthArray = size($distance);
  if ($lengthArray > 0){
    float $availablePoint[];
    for ($i=0; $i<$lengthArray; $i++){
      if ($distance[$i] == -1){
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        $availablePoint[$counter]=$i;
        $counter = $counter+1;
      }
    }
    $sPoint = floor(rand(0,$counter));
    $sPoint = $availablePoint[$sPoint];
  } 
  return $sPoint;
}
//--------------------
// calculate path
// of new flow
//--------------------
proc CalcPath (int $sPoint, int $g_i){
  global float $distance[];
  global float $posY[];
  global int $attractTo[];
  global int $connectTo[];
  int $flag = 0;
  int $g_j = size($distance)/$g_i;
  int $s_i = iPos($sPoint,$g_i);
  int $s_j = jPos($sPoint,$g_i);
  if (($s_j < ($g_j-1)) && (($distance[$sPoint+$g_i] >= 0) && ($distance[$sPoint] < 0))){
    $distance[$sPoint] = $distance[$sPoint+$g_i]+1;
    $attractTo[$sPoint] = $attractTo[$sPoint+$g_i];
    $connectTo[$sPoint] = $sPoint+$g_i;
    $posY[$sPoint] = $posY[$sPoint+$g_i]+rand(0,1);
    $flag = 1;
  }
  if (($flag == 0) && (($s_i > 0) && (($distance[$sPoint-1] >= 0) && ($distance[$sPoint] < 0)))){
    $distance[$sPoint] = $distance[$sPoint-1]+1;
    $attractTo[$sPoint] = $attractTo[$sPoint-1];
    $connectTo[$sPoint] = $sPoint-1;
    $posY[$sPoint] = $posY[$sPoint-1]+rand(0,1);
    $flag = 1;
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  }
  if (($flag == 0) && (($s_j > 0) && (($distance[$sPoint-$g_i] >= 0) && ($distance[$sPoint] < 0)))){
    $distance[$sPoint] = $distance[$sPoint-$g_i]+1; 
    $attractTo[$sPoint] = $attractTo[$sPoint-$g_i];
    $connectTo[$sPoint] = $sPoint-$g_i;
    $posY[$sPoint] = $posY[$sPoint-$g_i]+rand(0,1);
    $flag = 1;
  }
  if (($flag == 0) && (($s_i < ($g_i-1)) && (($distance[$sPoint+1] >= 0) && ($distance[$sPoint] < 0)))){
    $distance[$sPoint] = $distance[$sPoint+1]+1;
    $attractTo[$sPoint] = $attractTo[$sPoint+1];
    $connectTo[$sPoint] = $sPoint+1;
    $posY[$sPoint] = $posY[$sPoint+1]+rand(0,1);
  } 
}
//----------------------
// calculate height
//----------------------
proc float CalcMoveUp(float $x){
  float $xUp = 0;
  int $nx = floor($x);
  for ($k=0; $k<$nx; $k++){
    float $kMod = (float) $k;
    $xUp += (3/($kMod+1)); 
  }
  return $xUp;
}
//------------------------------------------------
// open first window:
// input of data of grid
//------------------------------------------------
if (`window -q -exists inputBasicGridData` == 1){
  deleteUI inputBasicGridData;
}
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if (`window -q -exists inputParameterSurface` == 1){
  deleteUI inputParameterSurface;
}
if (`window -q -exists inputParameter` == 1){
  deleteUI inputParameter;
}
window -title «Window 1: Basic Grid Data» -wh 400 300 inputBasicGridData;
  columnLayout -adjustableColumn true;
  text «   «;
  intSliderGrp 
    -label «cells in i-direction»
    -field true
    -minValue 1
    -maxValue 30
    -value 10
    iDirection;
  intSliderGrp 
    -label «cells in j-direction»
    -field true
    -minValue 1
    -maxValue 30
    -value 10
    jDirection;
  intSliderGrp 
    -label «number of attractors»
    -field true
    -minValue 1
    -maxValue 8
    -value 1
    noAttractor;
  text «  «;
  button -label «Window 2» -width 30 -height 20 -command inputParameter; 
showWindow inputBasicGridData;
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//------------------------------------------------
// read grid data
//------------------------------------------------
proc inputParameter(){
  int $grid_i = `intSliderGrp -q -value iDirection`; 
  int $grid_j = `intSliderGrp -q -value jDirection`; 
  int $numberAttractor = `intSliderGrp -q -value noAttractor`; 
  //---------------------------------
  // open second window:
  // input of data of attractor
  //---------------------------------
  if (`window -q -exists inputParameter` == 1){
    deleteUI inputParameter;
  }
  window -title «Window 2: Parameter of Attractor» -wh 400 300 inputParameter;
    columnLayout -adjustableColumn true;
    text «   «;
    for ($k=1; $k<=$numberAttractor; $k++){
      string $nameX = «i_attractor» + $k;
      string $nameY = «h_attractor» + $k;
      string $nameZ = «j_attractor» + $k; 
      string $textX = «attractor « + $k +»: i-direction»;
      string $textY = «attractor « + $k +»: h-direction»;
      string $textZ = «attractor « + $k +»: j-direction»;
      float $attHeight = (float) (($grid_i+$grid_j)/2);
      intSliderGrp 
        -label $textX
        -field true
        -minValue 1
        -maxValue $grid_i
        -value 1
        $nameX;
      intSliderGrp 
        -label $textZ
        -field true
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        -minValue 1
        -maxValue $grid_j
        -value 1
        $nameZ;
      floatSliderGrp 
        -label $textY
        -field true
        -minValue 0
        -maxValue $attHeight
        -value 0
        $nameY;
      text «   «;
    }
    button -label «Window 3» -width 30 -height 20 -command calcGrid; 
  showWindow inputParameter;
}
//-----------------
// initialze grid
//-----------------
proc calcGrid(){
  int $grid_i = `intSliderGrp -q -value iDirection`; 
  int $grid_j = `intSliderGrp -q -value jDirection`; 
  int $numberAttractor = `intSliderGrp -q -value noAttractor`; 
  global float $posX[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $posX[$n] = 0;
  }
  global float $posY[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $posY[$n] = -1;
  }
  global float $posZ[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $posZ[$n] = 0;
  }
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  global float $distance[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $distance[$n] = -1;
  }
  global float $moveFlag[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $moveFlag[$n] = 1;
  }
  global int $attractTo[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $attractTo[$n] = 0;
  }
  global int $connectTo[];
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $connectTo[$n] = 0;
  }
  int $index = 0;
  global int $attractor[];
  for ($i=0; $i<(2*$numberAttractor); $i){
    int $k = floor($i/2)+1;
    string $nameAttX = «i_attractor» + $k;
    string $nameAttY = «h_attractor» + $k;
    string $nameAttZ = «j_attractor» + $k;
    $attractor[$i]=`intSliderGrp -q -value $nameAttX`-1;
    $attractor[$i+1]=`intSliderGrp -q -value $nameAttZ`-1;
    $index = $attractor[$i]+$attractor[$i+1]*$grid_i;
    $attractTo[$index]=$index;
    $connectTo[$index]=$index;
    $distance[$index] = 0;
    $moveFlag[$index] = 0;
    $posY[$index] = `floatSliderGrp -q -value $nameAttY`;
    $i = $i+2;
  }
  int $loopNumber = 20*$grid_i*$grid_j;
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  for ($i=0; $i<$loopNumber; $i++){
    int $startPoint;
    $startPoint = CalcStartPoint();
    CalcPath($startPoint,$grid_i);
  }
  paraSurface;
}
//--------------------------
// open third window:
// input of parameter
//--------------------------
proc paraSurface (){
  if (`window -q -exists inputParameterSurface` == 1){
    deleteUI inputParameterSurface;
  }
  window -title «Window 3: Parameter of Surfcae» -wh 400 300 inputParameterSurface;
    columnLayout -adjustableColumn true;
    text «   «;
    floatSliderGrp 
      -label «size in i-direction»
      -field true
      -minValue 2
      -maxValue 50
      -value 20
      p_sizeX;
    floatSliderGrp 
      -label «size in j-direction»
      -field true
      -minValue 2
      -maxValue 50
      -value 20
      p_sizeZ;
    text «   «;
    floatSliderGrp 
      -label «stretching factor»
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      -field true
      -minValue 0
      -maxValue 5
      -value 1
      p_s;
    floatSliderGrp 
      -label «heigth»
      -field true
      -minValue 0.1
      -maxValue 3
      -value 1
      p_t;
    floatSliderGrp 
      -label «depth»
      -field true
      -minValue 0
      -maxValue 2
      -value 0.1
      p_d;
    floatSliderGrp 
      -label «random factor»
      -field true
      -minValue 0
      -maxValue 1
      -value 0
      p_distort;
    text «   «;
    checkBox 
      -label «show covering»
      -value true
      -width 80
      -align «left»
      p_cov;
    intSliderGrp 
      -label «closing factor»
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      -field true
      -minValue 0
      -maxValue 20
      -value 3
      p_c;
    text «   «;
    button -label «apply» -width 30 -height 20 -command showGrid;
  showWindow inputParameterSurface;
}
//-------------------
// output of grid
//-------------------
proc showGrid (){  
  select -all;
  delete;
  global float $posX[];
  global float $posY[];
  global float $posZ[];
  global int $attractor[];
  global int $attractTo[];
  global int $connectTo[];
  global float $distance[];
  global float $moveFlag[];
  float $posXCopy[];
  float $posYCopy[];
  float $posZCopy[];
  float $posYShadow[];
  float $shift[];
  int $grid_i = `intSliderGrp -q -value iDirection`; 
  int $grid_j = `intSliderGrp -q -value jDirection`; 
  int $numberAttractor = `intSliderGrp -q -value noAttractor`; 
  float $sizeX = `floatSliderGrp -q -value p_sizeX`; 
  float $sizeZ = `floatSliderGrp -q -value p_sizeZ`; 
  float $relX = $sizeX/(float) $grid_i;
  float $relZ = $sizeZ/(float) $grid_j;
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  float $stretching = `floatSliderGrp -q -value p_s`; 
  float $closing = `intSliderGrp -q -value p_c`;
  float $distort = `floatSliderGrp -q -value p_distort`; 
  float $thickness = `floatSliderGrp -q -value p_t`; 
  float $gSize = `floatSliderGrp -q -value p_d`;
  float $gShift = $gSize/2;
  for ($n=0; $n<($grid_i*$grid_j); $n++){
    $posYShadow[$n] = $posY[$n];
  }
  float $maxH = 0;
  float $maxD = 0;
  for ($i=0; $i<size($posY); $i++){
    if ($posY[$i]>$maxH){
      $maxH = $posY[$i]; 
    }
    if ($distance[$i]>$maxD){
      $maxD = (float) $distance[$i]; 
    }
  }
  float $relH = $thickness/($maxD+1);
  float $i_pos;
  float $j_pos;
  for ($i=0; $i<size($distance); $i++){
    $i_pos = (float) iPos($i,$grid_i);
    $j_pos = (float) jPos($i,$grid_i);
    $posX[$i] = $i_pos;
    $posZ[$i] = $j_pos;
    if ($moveFlag[$i] == 1){
      $posXCopy[$i] = $posX[$i]*$relX+$distort*rand(-1,1)*$relX;
      $posZCopy[$i] = $posZ[$i]*$relZ+$distort*rand(-1,1)*$relZ;
    } else {
      $posXCopy[$i] = $posX[$i]*$relX;
      $posZCopy[$i] = $posZ[$i]*$relZ;
    }
    float $distortHeight = 0;
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    if ($distance[$i] > 0){
      float $lowDistort = -1/$distance[$i];
      float $heighDistort = 1/($distance[$i]+1);
      $distortHeight = $distort*rand($lowDistort,$heighDistort);
    }
    float $relHeight = $posY[$i] - $posY[$attractTo[$i]];
    $posYCopy[$i] = $posY[$attractTo[$i]]+($relHeight+$distortHeight)*$stretching;
    float $relDistance = (float) $distance[$i]*$relH;
    $posYShadow[$i] = $posYCopy[$i]-($thickness-$relDistance);
    $shift[$i]=$gShift-3*$distance[$i]*$gShift/(4*$maxD);
  }
  // ------------
  for ($i=0; $i<size($distance); $i++){
    float $cubeHeigth = $posYCopy[$i]-$posYShadow[$i];
    polyCube -width (2*$shift[$i]) -height $cubeHeigth -depth (2*$shift[$i]);
    move -r $posXCopy[$i] ($posYCopy[$i]-$cubeHeigth/2) $posZCopy[$i];
  }
  for ($i=0; $i<size($distance); $i++){
    int $g_i = iPos($i,$grid_i);
    int $g_j = jPos($i,$grid_i);
    if ($g_i < ($grid_i-1)){
    polyCreateFacet 
      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]-$shift[$i]) 
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]-$shift[$i]);
    polyCreateFacet
      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]) 
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
    polyCreateFacet 
      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]-$shift[$i])  
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
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      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
    polyCreateFacet
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]-$shift[$i])  
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]-$shift[$i+1])
      -p ($posXCopy[$i+1]-$shift[$i+1]) $posYShadow[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]) ;
    select -clear;
  }
  if ($g_j < ($grid_j-1)){
    polyCreateFacet
      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]) 
      -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]-                       
 $shift[$i+$grid_i])
      -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]-            
 $shift[$i+$grid_i])
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
    polyCreateFacet 
      -p ($posXCopy[$i]-$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]) 
      -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
 $shift[$i+$grid_i])
      -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
 $shift[$i+$grid_i])
      -p ($posXCopy[$i]-$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]);
    polyCreateFacet 
      -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])  
      -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
 $shift[$i+$grid_i])
      -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
 $shift[$i+$grid_i])
      -p ($posXCopy[$i]-$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
    polyCreateFacet 
      -p ($posXCopy[$i]+$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i])  
      -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
 $shift[$i+$grid_i])
      -p ($posXCopy[$i+$grid_i]-$shift[$i+$grid_i]) $posYShadow[$i+$grid_i] ($posZCopy[$i+$grid_i]- 
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 $shift[$i+$grid_i])
      -p ($posXCopy[$i]-$shift[$i]) $posYShadow[$i] ($posZCopy[$i]+$shift[$i]) ;
    select -clear;
  }
  // ------------
  if (`checkBox -q -value p_cov` == 1){
    if (($g_i < ($grid_i-1)) && ($g_j < ($grid_j-1))){
      int $d1 = abs($distance[$i]-$distance[$i+1]);
      int $d2 = abs($distance[$i]-$distance[$i+$grid_i]);
      int $d3 = abs($distance[$i]-$distance[$i+$grid_i+1]);
      int $flowDiff = max($d1,$d2);
      $flowDiff = max($flowDiff,$d3);
      if ($flowDiff <= $closing){
        polyCreateFacet
          -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i])
          -p ($posXCopy[$i+1]-$shift[$i+1]) $posYCopy[$i+1] ($posZCopy[$i+1]+$shift[$i+1])
          -p ($posXCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]) $posYCopy[$i+$grid_i+1]   
  ($posZCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]);
        polyCreateFacet
          -p ($posXCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1]) $posYCopy[$i+$grid_i+1]    
  ($posZCopy[$i+$grid_i+1]-$shift[$i+$grid_i+1])
          -p ($posXCopy[$i+$grid_i]+$shift[$i+$grid_i]) $posYCopy[$i+$grid_i] 
  ($posZCopy[$i+$grid_i]-$shift[$i+$grid_i])
          -p ($posXCopy[$i]+$shift[$i]) $posYCopy[$i] ($posZCopy[$i]+$shift[$i]);
        select -clear;
      }
    }
    float $bX = 0;
    float $bY = 0;
    float $bZ = 0;
    float $bXnext = 0;
    float $bYnext = 0;
    float $bZnext = 0;
    if (($g_j == 0) && ($g_i < ($grid_i-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i+1])/2;
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      $bY = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i+1])/2-0.5;
      polyCreateFacet
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
        -p $bX $bY $bZ;
      if ($g_i < ($grid_i-2)){
        $bXnext = ($posXCopy[$i+1]+$posXCopy[$i+2])/2;
        $bYnext = ($posYCopy[$i+1]+$posYCopy[$i+2])/2+0.25;
        $bZnext = ($posZCopy[$i+1]+$posZCopy[$i+2])/2-0.5;
        polyCreateFacet
          -p $bX $bY $bZ
          -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
          -p $bXnext $bYnext $bZnext;
      }
      select -clear;
    }
    if (($g_j == ($grid_j-1)) && ($g_i < ($grid_i-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i+1])/2;
      $bY = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i+1])/2+0.5;
      polyCreateFacet
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
        -p $bX $bY $bZ;
      if ($g_i < ($grid_i-2)){
        $bXnext = ($posXCopy[$i+1]+$posXCopy[$i+2])/2;
        $bYnext = ($posYCopy[$i+1]+$posYCopy[$i+2])/2+0.25;
        $bZnext = ($posZCopy[$i+1]+$posZCopy[$i+2])/2+0.5;
        polyCreateFacet
          -p $bX $bY $bZ
          -p $posXCopy[$i+1] $posYCopy[$i+1] $posZCopy[$i+1]
          -p $bXnext $bYnext $bZnext;
      }
      select -clear;
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    }
    if (($g_i == 0) && ($g_j < ($grid_j-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2-0.5;
      $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
      polyCreateFacet
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
        -p $bX $bY $bZ;
      if ($g_j < ($grid_j-2)){
        $bXnext = ($posXCopy[$i+$grid_i]+$posXCopy[$i+2*$grid_i])/2-0.5;
        $bYnext = ($posYCopy[$i+$grid_i]+$posYCopy[$i+2*$grid_i])/2+0.25;
        $bZnext = ($posZCopy[$i+$grid_i]+$posZCopy[$i+2*$grid_i])/2;
        polyCreateFacet
          -p $bX $bY $bZ
          -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
          -p $bXnext $bYnext $bZnext;
      }
      select -clear;
    }
    if (($g_i == ($grid_i-1)) && ($g_j < ($grid_j-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2+0.5;
      $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
      polyCreateFacet
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
        -p $bX $bY $bZ;
      if ($g_j < ($grid_j-2)){
        $bXnext = ($posXCopy[$i+$grid_i]+$posXCopy[$i+2*$grid_i])/2+0.5;
        $bYnext = ($posYCopy[$i+$grid_i]+$posYCopy[$i+2*$grid_i])/2+0.25;
        $bZnext = ($posZCopy[$i+$grid_i]+$posZCopy[$i+2*$grid_i])/2;
        polyCreateFacet
          -p $bX $bY $bZ
          -p $posXCopy[$i+$grid_i] $posYCopy[$i+$grid_i] $posZCopy[$i+$grid_i]
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          -p $bXnext $bYnext $bZnext;
      }
      select -clear;
    }
    if (($g_i == 0) && ($g_j == 0)){
      $bX = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2-0.5;
      $bY = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
      $bXnext = ($posXCopy[$i]+$posXCopy[$i+1])/2;
      $bYnext = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
      $bZnext = ($posZCopy[$i]+$posZCopy[$i+1])/2-0.5;
      polyCreateFacet
        -p $bX $bY $bZ
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
      polyCreateFacet 
        -p $bXnext $bYnext $bZnext
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
      select -clear;
    }
    if (($g_i == ($grid_i-1)) && ($g_j == 0)){
      $bX = ($posXCopy[$i]+$posXCopy[$i-1])/2;
      $bY = ($posYCopy[$i]+$posYCopy[$i-1])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i-1])/2-0.5;
      $bXnext = ($posXCopy[$i]+$posXCopy[$i+$grid_i])/2+0.5;
      $bYnext = ($posYCopy[$i]+$posYCopy[$i+$grid_i])/2+0.25;
      $bZnext = ($posZCopy[$i]+$posZCopy[$i+$grid_i])/2;
      polyCreateFacet
        -p $bX $bY $bZ
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
      polyCreateFacet
        -p $bXnext $bYnext $bZnext
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
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        -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]-0.5);
      select -clear;
    }
    if (($g_i == 0) && ($g_j == ($grid_j-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i-$grid_i])/2-0.5;
      $bY = ($posYCopy[$i]+$posYCopy[$i-$grid_i])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i-$grid_i])/2;
      $bXnext = ($posXCopy[$i]+$posXCopy[$i+1])/2;
      $bYnext = ($posYCopy[$i]+$posYCopy[$i+1])/2+0.25;
      $bZnext = ($posZCopy[$i]+$posZCopy[$i+1])/2+0.5;
      polyCreateFacet
        -p $bX $bY $bZ
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
      polyCreateFacet
        -p $bXnext $bYnext $bZnext
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]-0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
      select -clear;
    }
    if (($g_i == ($grid_i-1)) && ($g_j == ($grid_j-1))){
      $bX = ($posXCopy[$i]+$posXCopy[$i-$grid_i])/2+0.5;
      $bY = ($posYCopy[$i]+$posYCopy[$i-$grid_i])/2+0.25;
      $bZ = ($posZCopy[$i]+$posZCopy[$i-$grid_i])/2;
      $bXnext = ($posXCopy[$i]+$posXCopy[$i-1])/2;
      $bYnext = ($posYCopy[$i]+$posYCopy[$i-1])/2+0.25;
      $bZnext = ($posZCopy[$i]+$posZCopy[$i-1])/2+0.5;
      polyCreateFacet
        -p $bX $bY $bZ
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
      polyCreateFacet
        -p $bXnext $bYnext $bZnext
        -p $posXCopy[$i] $posYCopy[$i] $posZCopy[$i]
        -p ($posXCopy[$i]+0.5) ($posYCopy[$i]+0.25) ($posZCopy[$i]+0.5);
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      select -clear;
    }
  }
}
float $moveX = $sizeX-$relX+2;
float $moveZ = $sizeZ-$relZ+2;
polyCube -w $moveX -h $thickness -d $moveZ;
move -r (($moveX-2)/2) (-1*$thickness/2) (($moveZ-2)/2);
select -clear;
// -----------
for ($i=0; $i<(2*$numberAttractor); $i){
  int $index = $attractor[$i]+$attractor[$i+1]*$grid_i;
  sphere 
    -pivot $posX[$index] $posY[$index] $posZ[$index]
    -radius 0.4;
  move -r ($sizeX+10) 0 0;
  select -clear;
  $i=$i+2;
}
for ($i=0; $i<size($distance); $i++){
  int $iConnect = $connectTo[$i];
  if ($iConnect != $i){
    sphere 
      -pivot $posX[$i] $posY[$i] $posZ[$i]
      -radius 0.2;
    move -r ($sizeX+10) 0 0;
    sphere 
      -pivot $posX[$iConnect] $posY[$iConnect] $posZ[$iConnect]
      -radius 0.2;
    move -r ($sizeX+10) 0 0;
    polyCreateFacet 
      -p $posX[$i] $posY[$i] $posZ[$i] 
      -p $posX[$iConnect] $posY[$iConnect] $posZ[$iConnect]
      -p ($posX[$iConnect]-0.05) ($posY[$iConnect]-0.05) ($posZ[$iConnect]-0.05)
      -p ($posX[$i]-0.05) ($posY[$i]-0.05) ($posZ[$i]-0.05); 
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    move -r ($sizeX+10) 0 0;
    select -clear;
  }
}
} 






