
VectorScript Language Guide

Welcome to the VectorScript Language Guide.

VectorScript is the scripting language component of VectorWorks.
Similar to Pascal, VectorScript is actually a "superset" of the Pascal
language, extending the capabilities of that language with a broad
range of features which access the power and flexibility of the
VectorWorks engine.

To navigate to the topic you are interested in, either select it from
the table of contents on the left, or use the Acrobat Find and
Search features. A comprehensive index is also included, which
can be accessed by clicking Index from the table of contents.

© 2002 Nemetschek N.A., Incorporated. All Rights Reserved.
Nemetschek N.A., Inc. and its licensors retain all ownership
rights to the MiniCAD® VectorWorks® computer program and
all other computer programs as well as documentation offered by
Nemetschek N.A. Use of Nemetschek N.A. software is governed
by the license agreement accompanying your original media.
The source code for such software is a confidential trade secret
of Nemetschek N.A. You may not attempt to decipher,
decompile, develop or otherwise reverse engineer Nemetschek
N.A. software. Information necessary to achieve interoperability
with this software may be furnished upon request.
VectorScript Language Guide
This manual, as well as the software described in it, is furnished
under license and may only be used or copied in accordance with
the terms of such license. The information in this manual is
furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by
Nemetschek N.A. Nemetschek N.A. assumes no responsibility
or liability for any errors or inaccuracies that may appear in this
manual.
Except as permitted by such license, no part of this publication
may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, recording,
or otherwise, without the express prior written permission of
Nemetschek N.A.
Existing artwork or images that you may desire to scan or copy
may be protected under copyright law. The unauthorized
incorporation of such artwork into your work may be a violation
of the rights of the author or illustrator. Please be sure to obtain
any permission required from such authors.
MiniCAD and VectorWorks are registered trademarks of
Nemetschek N.A. VectorScript, SmartCursor, and the Design
Drafting Toolkit are trademarks of Nemetschek N.A.
The following are copyrights or trademarks of their respective
companies or organizations:
Microsoft, Windows, Windows NT, Windows 2000, Windows
ME, and Windows XP are registered trademarks of the
Microsoft Corporation.
QuickDraw 3D, QuickTime, and Macintosh are trademarks of
Apple Computer, Inc.
All other brand or product names are trademarks or registered
trademarks of their respective companies or organizations.
For Defense Agencies: Restricted Rights Legend. Use
reproduction, or disclosure is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights of Technical Data and
Computer Software clause at 252.227-7013.
For civilian agencies: Restricted Rights Legend. Use,
reproduction, or disclosure is subject to restrictions set forth in
subparagraphs (a) through (d) of the commercial Computer
Software Restricted Rights clause at 52.227-19. Unpublished
rights reserved under the copyright laws of the United States.
The contractor/manufacturer is Nemetschek N.A., Incorporated,
7150 Riverwood Drive, Columbia, MD, 21046, USA.

Registration & Updates
The VectorWorks disks are warranted subject to the conditions of
the License Agreement for a period of six (6) months from the
date of purchase by the end user. A completed Registration Card
must be returned to Nemetschek N.A., Inc. to officially register
your copy of VectorWorks.
Only registered users are entitled to technical support, the
Nemetschek N.A. newsletter, maintenance releases, and reduced
cost upgrades.
Defective master disks are replaced free of charge to the end user
for six (6) months after purchase. Thereafter, master disks will
be replaced for a nominal service fee set by Nemetschek N.A.,
Inc.
Nemetschek N.A., Inc. will make available from time to time
upgrades to the purchased program for nominal charges. Such
upgrades, along with the original master copy of the program,
shall be considered one program, subject in its entirety to the
License Agreement.

License Agreement
Nemetschek North America, Inc., hereafter referred to as NNA,
grants the buyer a non-exclusive license to use the software in
the package according to the terms set forth below. The software
is protected by copyright laws and international copyright
treaties, as well as by other intellectual property laws and
treaties.
This program has been purchased for a single, specific operating
system per serial number. It is licensed for installation on one
machine for each serial number.

The Buyer May:
Operate this software on one computer at a time. Make one
back-up copy of the software, which is automatically subject to
this agreement. Modify VectorScript routines provided with this
software.
The Buyer May Not:
1: Make this software available to any person or entity other than
employees who must use this software as specified above.
2: Modify or merge the software with another program, except
for personal use as described above.
3: Disassemble, decompile, reverse engineer, or attempt in any
fashion to discover the source code of the software.
4: Sub-license, sell, lend, rent, or lease any portion of the
software. The buyer may, after notifying NNA, permanently
transfer all (but no portion thereof) of the software to another
person or entity, who in turn is subject to this agreement.
5: Operate the software on more than one computer at a time.
(Site licenses are available from NNA for multi-station use. All
sites in a site license must be used at one location.) NOTE: This
software involves valuable proprietary rights of NNA and others.
There is no transfer to the buyer of any title to, or ownership of,
this software; nor is there transfer of any patent, copyright, trade
secret, trade name, trademark, or other proprietary rights related
to the software. The buyer may not violate these rights and must
take appropriate steps to protect NNA’s rights. NNA may at any
time replace, modify, alter, improve, enhance, or change the
software. The license and the buyer's right to use the software
terminate automatically if the buyer violates any part of this
agreement. In the event of termination of buyer’s right to use the
software, all copies of the software must be destroyed or
immediately returned to NNA.
Upgrades
All upgrades or sequential versions of the program obtained
under upgrade agreements or offered at a later date in
consideration of this purchase will be considered one program
under this license agreement. Under no circumstances will the
providing of upgrades be considered as permission for this
program to reside on more than one computer at any time, nor
may the buyer sub-license, sell, lend, rent, or lease any portion of
former versions of the software. Again, the license and the
buyer’s right to use the software terminate automatically if the
buyer violates any part of this agreement. In the event of

termination of buyer’s right to use the software, all copies of the
software must be destroyed or immediately returned to NNA.

General
NNA is not responsible for maintaining the software or for
helping the buyer in the use of said software except through the
Registered User Support Service. This agreement constitutes the
entire agreement and supersedes any prior agreement between
NNA and the buyer.
In case of differences between the license agreement in this
manual and the license agreement in the software, the license
agreement in the software applies.

Student and Educational Sales:
Student and Education copies are sold under certain restrictions
set at the time of sale. The user agrees to abide by the restrictions
set forth for these versions.

1Table of Contents
INTRODUCTION TO VECTORSCRIPT.. 1-1
SOME BACKGROUND ON VECTORSCRIPT ... 1-1

WHAT VECTORSCRIPT CAN DO .. 1-1
WHAT VECTORSCRIPT CAN'T DO.. 1-2
AN EXAMPLE SCRIPT ... 1-3
NEW FEATURES IN VECTORSCRIPT 10.. 1-5
USING THE REST OF THIS MANUAL ... 1-6
EXPLORING VECTORSCRIPT ... 1-7

LEXICAL STRUCTURES OF VECTORSCRIPT .. 2-1
CASE SENSITIVITY ... 2-1
SYMBOLS... 2-1
DELIMITERS ... 2-2
COMMENTS.. 2-2
LITERALS ... 2-3
IDENTIFIERS... 2-5
RESERVED WORDS.. 2-6
SPECIAL SYMBOLS... 2-7

VARIABLES, CONSTANTS, AND DATA TYPES.. 3-1
VARIABLES .. 3-1
CONSTANTS... 3-3
VECTORSCRIPT DATA TYPES ... 3-4

FUNDAMENTAL DATA TYPES – NUMERIC ... 3-4
FUNDAMENTAL DATA TYPES – TEXT ... 3-6
FUNDAMENTAL DATA TYPES – OTHER .. 3-6

ARRAYS IN VECTORSCRIPT .. 4-1
STATIC ARRAYS... 4-1
DYNAMIC ARRAYS.. 4-3

PERFORMANCE CONSIDERATIONS WITH DYNAMIC ARRAYS 4-6
iVectorScript Language Guide

VECTORS AND ARRAY NOTATION...4-6
EXTENDED STRING SUPPORT WITH CHAR ARRAYS ...4-7
PERFORMING STANDARD STRING-RELATED OPERATIONS...................................4-11

STRUCTURES..5-1
CREATING STRUCTURES ...5-1
ACCESSING VALUES IN A STRUCTURE..5-3

EXPRESSIONS...6-1
SIMPLE EXPRESSIONS...6-1
COMPLEX EXPRESSIONS ...6-1
OPERATOR PRECEDENCE..6-2
OPERATOR ASSOCIATIVITY..6-3
ARITHMETIC OPERATORS ..6-3
COMPARISON OPERATORS ..6-5
LOGICAL OPERATORS ...6-6
OTHER OPERATORS..6-8

STATEMENTS ..7-1
ASSIGNMENT STATEMENTS ...7-1
COMPOUND STATEMENTS ...7-5
PROCEDURE STATEMENTS ..7-5
GOTO STATEMENTS ..7-6
REPETITION STATEMENTS ...7-7

THE FOR STATEMENT ..7-7
THE WHILE STATEMENT ..7-8
THE REPEAT STATEMENT ...7-9

CONDITIONAL STATEMENTS...7-10
THE IF STATEMENT...7-10
THE CASE STATEMENT ..7-13

USER DEFINED FUNCTIONS...8-1
USER-DEFINED PROCEDURES ...8-1
ii VectorScript Language Guide

TOC
USER-DEFINED FUNCTIONS.. 8-4
PARAMETERS... 8-8

FORMAL AND ACTUAL PARAMETERS ... 8-8
VALUE AND VARIABLE PARAMETERS ... 8-8

PROGRAM BLOCKS AND BLOCK SCOPE... 8-9

USER INTERFACE ... 9-1
PREDEFINED ALERTS ... 9-1
CUSTOM DIALOGS.. 9-2
CUSTOM DIALOG CONCEPTS .. 9-2

CONTROLS... 9-3
EVENTS ... 9-3

CUSTOM DIALOG CONTROLS .. 9-3
STATIC TEXT.. 9-4
EDIT TEXT ... 9-4
EDIT TEXT BOX.. 9-4
EDIT INTEGER .. 9-4
EDIT REAL ... 9-5
PUSH BUTTON ... 9-5
RADIO BUTTON .. 9-5
CHECK BOX... 9-6
PULLDOWN MENU .. 9-6
LIST BOX ... 9-7
GROUP BOX .. 9-7
SLIDER .. 9-8
IMAGE PANE .. 9-9
COLOR PALETTE .. 9-9
IMAGE POPUP .. 9-10
GRADIENT SLIDER.. 9-10

CREATING A CUSTOM DIALOG .. 9-10
DEFINING THE DIALOG CONTROLS .. 9-11
DEFINING THE DIALOG LAYOUT... 9-14
RUNNING THE DIALOG.. 9-14
HANDLING DIALOG EVENTS .. 9-14

USING VECTORSCRIPT PLUG-INS.. 10-1
CREATING AND USING PLUG-INS... 10-1
iiiVectorScript Language Guide

USING THE DIFFERENT TYPES OF PLUG-INS...10-2
HOW PLUG-INS WORK ..10-3

UNDERSTANDING PLUG-IN PARAMETERS ...10-4
HOW PARAMETERS WORK ..10-4
PARAMETER TYPES...10-5
ACCESSING PARAMETERS FROM SCRIPTS..10-11
SETTING PARAMETER VALUES FROM SCRIPTS ...10-12
SETTING PARAMETER VISIBILTY...10-14
SETTING DEFAULT PARAMETER VISIBILITY ...10-15

VECTORSCRIPT MENU COMMANDS..11-1
CREATING A MENU COMMAND PLUG-IN ...11-1

CREATING THE MENU COMMAND PLUG-IN..11-1
SETTING THE CATEGORY OF THE MENU COMMAND ..11-2

SETTING OPTIONS FOR MENU COMMANDS...11-3
SETTING DOCUMENT PROPERTIES FOR THE COMMAND ..11-3
SETTING HELP TEXT FOR THE MENU COMMAND...11-4

PARAMETERS AND MENU COMMANDS..11-5
CREATING A PARAMETER RECORD FOR A MENU COMMAND11-5
CREATING SCRIPT CODE FOR A MENU COMMAND..11-6

WORKING WITH MENU COMMANDS ..11-6
ADDING A MENU COMMAND TO A WORKSPACE ..11-6

VECTORSCRIPT TOOL ITEMS ...12-1
CREATING A TOOL ITEM PLUG-IN...12-1

CREATING THE TOOL PLUG-IN ...12-1
SETTING THE TOOL CATEGORY ...12-2

SETTING OPTIONS FOR THE TOOL ...12-3
SETTING MODE BAR TEXT FOR THE TOOL ...12-3
SETTING THE TOOL ICON...12-3
SETTING ACTIVATION OPTIONS FOR THE TOOL...12-4
SETTING VIEW PROJECTION FOR THE TOOL ...12-4
SETTING SCRIPT EXECUTION OPTIONS FOR THE TOOL ...12-5
SETTING HELP TEXT FOR THE OBJECT ..12-5

PARAMETERS AND VECTORSCRIPT TOOLS...12-6
CREATING A PARAMETER RECORD FOR A TOOL ...12-6
iv VectorScript Language Guide

TOC
CREATING THE TOOL SCRIPT ... 12-7
CREATING SCRIPT CODE FOR A TOOL... 12-7

WORKING WITH TOOL ITEMS.. 12-8
ADDING A TOOL TO A WORKSPACE... 12-8
SETTING TOOL ITEM DEFAULTS .. 12-8

VECTORSCRIPT POINT OBJECTS... 13-1
CREATING A POINT OBJECT PLUG-IN .. 13-1

CREATING THE OBJECT PLUG-IN... 13-2
SETTING THE OBJECT CATEGORY... 13-2

SETTING OPTIONS FOR THE OBJECT... 13-3
SETTING DISPLAY DEFAULTS FOR THE OBJECT ... 13-3
SETTING THE OBJECT ICON .. 13-3
SETTING ACTIVATION OPTIONS FOR THE OBJECT .. 13-4
SETTING THE DEFAULT CLASS OF THE OBJECT ... 13-4
SETTING HELP TEXT FOR THE OBJECT.. 13-5
SETTING OBJECT RESET OPTIONS.. 13-5

PARAMETERS AND POINT OBJECTS .. 13-6
CREATING A PARAMETER RECORD FOR AN OBJECT .. 13-6

CREATING THE OBJECT SCRIPT.. 13-7
CREATING SCRIPT CODE FOR A POINT OBJECT... 13-7

SETTING OBJECT INSERTION OPTIONS.. 13-8
SETTING INSERTION OPTIONS FOR A POINT OBJECT.. 13-8

WORKING WITH POINT OBJECTS... 13-9
ADDING A POINT OBJECT TO A WORKSPACE ... 13-9
PLACING OBJECTS IN DOCUMENTS ... 13-10
EDITING OBJECTS IN THE DOCUMENT ... 13-11

USING POINT OBJECTS WITH THE RESOURCE BROWSER... 13-12
CREATING STATIC SYMBOLS WITH OBJECTS ... 13-12
CREATING OBJECT SYMBOLS ... 13-13
CREATING GROUP SYMBOLS WITH OBJECTS ... 13-14

VECTORSCRIPT LINEAR OBJECTS... 14-1
CREATING A LINEAR OBJECT PLUG-IN... 14-1

CREATING THE OBJECT PLUG-IN... 14-1
SETTING THE OBJECT CATEGORY... 14-2
vVectorScript Language Guide

SETTING OPTIONS FOR THE OBJECT..14-3
SETTING DISPLAY DEFAULTS FOR THE OBJECT ..14-3
SETTING THE OBJECT ICON...14-3
SETTING ACTIVATION OPTIONS FOR THE OBJECT ...14-4
SETTING THE DEFAULT CLASS OF THE OBJECT ..14-4
SETTING HELP TEXT FOR THE OBJECT ..14-4
SETTING OBJECT RESET OPTIONS ..14-5

PARAMETERS AND LINEAR OBJECTS..14-6
CREATING A PARAMETER RECORD FOR AN OBJECT ...14-6

CREATING THE OBJECT SCRIPT...14-7
CREATING SCRIPT CODE FOR A LINEAR OBJECT ..14-8

SETTING OBJECT INSERTION OPTIONS...14-8
SETTING INSERTION OPTIONS FOR A LINEAR OBJECT...14-8

WORKING WITH LINEAR OBJECTS ..14-9
ADDING A LINEAR OBJECT TO A WORKSPACE ..14-9
PLACING OBJECTS IN DOCUMENTS ..14-10
EDITING LINEAR OBJECTS IN THE DOCUMENT ..14-12

USING LINEAR OBJECTS WITH THE RESOURCE BROWSER ..14-13
CREATING STATIC SYMBOLS WITH LINEAR OBJECTS ..14-13
CREATING OBJECT SYMBOLS WITH LINEAR OBJECTS ...14-14
CREATING GROUP SYMBOLS WITH LINEAR OBJECTS ..14-15

VECTORSCRIPT RECTANGULAR OBJECTS..15-1
CREATING A RECTANGULAR OBJECT PLUG-IN ..15-1

CREATING THE OBJECT PLUG-IN ...15-1
SETTING THE OBJECT CATEGORY..15-2

SETTING OPTIONS FOR THE OBJECT..15-3
SETTING DISPLAY DEFAULTS FOR THE OBJECT ..15-3
SETTING THE OBJECT ICON...15-3
SETTING ACTIVATION OPTIONS FOR THE OBJECT ...15-4
SETTING THE DEFAULT CLASS OF THE OBJECT ..15-4
SETTING HELP TEXT FOR THE OBJECT ..15-5
SETTING OBJECT RESET OPTIONS ..15-5

PARAMETERS AND RECTANGULAR OBJECTS ..15-6
CREATING A PARAMETER RECORD FOR AN OBJECT ...15-7

CREATING THE OBJECT SCRIPT...15-8
CREATING SCRIPT CODE FOR A RECTANGULAR OBJECT.......................................15-8
vi VectorScript Language Guide

TOC
SETTING OBJECT INSERTION OPTIONS.. 15-8
SETTING INSERTION OPTIONS FOR A RECTANGULAR OBJECT............................... 15-8

WORKING WITH RECTANGULAR OBJECTS.. 15-9
ADDING A RECTANGULAR OBJECT TO A WORKSPACE .. 15-9
PLACING OBJECTS IN DOCUMENTS ... 15-10
EDITING RECTANGULAR OBJECTS IN THE DOCUMENT .. 15-12

 USING RECTANGULAR OBJECTS WITH THE RESOURCE BROWSER........................... 15-13
CREATING STATIC SYMBOLS WITH RECTANGULAR OBJECTS 15-13
CREATING OBJECT SYMBOLS WITH RECTANGULAR OBJECTS............................. 15-14
CREATING GROUP SYMBOLS WITH RECTANGULAR OBJECTS.............................. 15-15

VECTORSCRIPT PATH OBJECTS.. 16-1
CREATING A PATH OBJECT PLUG-IN ... 16-1

CREATING THE OBJECT PLUG-IN... 16-1
SETTING THE OBJECT CATEGORY... 16-2

SETTING OPTIONS FOR THE OBJECT... 16-2
SETTING DISPLAY DEFAULTS FOR THE OBJECT ... 16-3
SETTING THE OBJECT ICON .. 16-3
SETTING ACTIVATION OPTIONS FOR THE OBJECT .. 16-4
SETTING THE DEFAULT CLASS OF THE OBJECT ... 16-4
SETTING HELP TEXT FOR THE OBJECT.. 16-5
SETTING OBJECT RESET OPTIONS.. 16-6

PARAMETERS AND PATH OBJECTS.. 16-7
CREATING A PARAMETER RECORD FOR AN OBJECT .. 16-8

CREATING THE OBJECT SCRIPT.. 16-8
CREATING SCRIPT CODE FOR A PATH OBJECT.. 16-8

SETTING OBJECT INSERTION OPTIONS.. 16-9
SETTING INSERTION OPTIONS FOR A PATH OBJECT... 16-9

WORKING WITH PATH OBJECTS ... 16-10
ADDING A PATH OBJECT TO A WORKSPACE .. 16-10
PLACING OBJECTS IN FILES.. 16-11
EDITING PATH OBJECTS... 16-13

USING PATH OBJECTS WITH THE RESOURCE BROWSER .. 16-14
CREATING STATIC SYMBOLS WITH PATH OBJECTS .. 16-14
CREATING OBJECT SYMBOLS WITH PATH OBJECTS ... 16-15
CREATING GROUP SYMBOLS WITH PATH OBJECTS.. 16-16
viiVectorScript Language Guide

VECTORSCRIPT DEVELOPMENT TOOLS..17-1
CREATING SCRIPTS ..17-1

CREATING A DOCUMENT SCRIPT ...17-2
EDITING AN EXISTING DOCUMENT SCRIPT (RESOURCE BROWSER)17-2
EDITING AN EXISTING DOCUMENT SCRIPT (SCRIPT PALETTE)17-3
CREATING SCRIPTS IN THE PLUG-IN EDITOR ..17-3

THE VECTORSCRIPT EDITOR...17-4
EDITOR OPTIONS ..17-5
COMPILE SCRIPT ..17-7
LINE NUMBER ...17-7

VECTORSCRIPT PLUG-IN EDITOR...17-7
USING THE PLUG-IN EDITOR..17-7
MANAGING PLUG-INS ..17-8
PLUG-IN OPTION SETTINGS ...17-9

THE VECTORSCRIPT DEBUGGER ...17-10
LAUNCHING THE DEBUGGER..17-10
THE DEBUGGER INTERFACE ..17-12
DEBUGGER CONTROLS ...17-12
CONTROLLING EXECUTION ..17-14
USING BREAKPOINTS ..17-16
VIEWING DATA IN THE DEBUGGER ...17-17

NUMERIC AND DATA FORMATS... A-1
UNITS AND NUMERIC VALUES IN SCRIPTS ... A-1

ABSOLUTE AND RELATIVE MODES .. A-2
DISTANCE-ANGLE MODE... A-3

DATA FORMATTING WITH WRITE AND WRITELN... A-3
NUMERIC VALUES AND FORMATTING... A-4
STRING VALUES AND FORMATTING ... A-4
EXAMPLES OF NUMERIC VALUES AND WRITE-WRITELN... A-4
EXAMPLES OF STRING VALUES AND WRITE-WRITELN ... A-5

SEARCH CRITERIA ... B-1
SEARCH CRITERIA FORMAT.. B-1

SYNTAX... B-1
MULTIPLE SEARCH TERMS ... B-2
MULTIPLE SEARCH VALUES .. B-2
viii VectorScript Language Guide

TOC
ATTRIBUTE TYPES.. B-2
MARKERS (AR).. B-2
CLASS (C) ... B-3
FILL BACKGROUND (FB)... B-3
FILL FOREGROUND (FF)... B-3
FILL PATTERN (FP) .. B-3
LAYER (L).. B-3
LINE WEIGHT (LW) .. B-3
PEN PATTERN/LINESTYLE (PP)... B-3
OBJECT NAME (N) ... B-4
ATTACHED RECORD (R) ... B-4
OBJECT TYPE (T)... B-4
PEN BACKGROUND (PB) .. B-4
PEN FOREGROUND (PF) .. B-4
SELECTION STATUS (SEL) ... B-5
SYMBOL NAME (S) ... B-5
VISIBILITY (V)... B-5

SPECIALIZED SEARCHES .. B-5
RECORD FIELD VALUES.. B-5
SEARCH SYMBOL INSTANCES (INSYMBOL) ... B-6
SYMBOL FLIP STATUS (ISFLIPPED) .. B-6
ALL OBJECTS (ALL)... B-6

SEARCH CRITERIA TABLES ... B-7

COMPILER DIRECTIVES.. C-1
{$INCLUDE}...C-1
{$DEBUG}..C-2
{$NAMES}..C-2
{$STRICT}..C-3

OBJECT TYPES ... D-1
STANDARD TYPES..D-1

SELECTOR TABLES ..E-1
FILL PATTERNS.. E-1
LINESTYLES ... E-2
ixVectorScript Language Guide

MARKERS .. E-2
SETTOOL - CALLTOOL SELECTORS .. E-4
RECORD FIELD DATA TYPE SELECTORS ... E-5
RECORD FIELD DISPLAY STYLE SELECTORS ... E-5
DIMENSION STYLE SELECTORS .. E-6

LINEAR DIMENSION .. E-7
CIRCULAR DIMENSION.. E-7
ANGULAR DIMENSION... E-8

PREFERENCE SELECTORS ... F-1
USING PREFERENCE SELECTORS ... F-1
PREFERENCE SELECTOR VALUE TABLES .. F-1

GENERAL APPLICATION/DOCUMENT PREFERENCES... F-2
PRIMARY UNITS ... F-5
SECONDARY UNITS .. F-6
DXF PREFERENCE SELECTORS.. F-7
GRADIENT AND IMAGE FILL PREFERENCE SELECTORS... F-8
MISCELLANEOUS PREFERENCE SELECTORS.. F-8

OBJECT SELECTORS ...G-1
OBJECT VARIABLE SELECTORS ..G-1
SETTING SELECTOR VALUE TABLES ...G-1

DIMENSION ..G-2
LIGHTS ..G-3
SYMBOL/SYMBOL DEFINITIONS ...G-4
ROOF/FLOORS/COLUMNS...G-4
LAYERS ...G-5
LAYER LINK ...G-5
WALLS/WALL CAVITIES ..G-5
PLUG-IN OBJECTS..G-6
2D/3D STATUS..G-6
WORKSHEETS..G-6
TEXTURES ...G-7
GRADIENT AND IMAGE FILLS...G-8
x VectorScript Language Guide

TOC
MENU SELECTORS .. H-1
MENU ITEMS AND VECTORSCRIPT ..H-1

PLUG-IN MENU COMMANDS..H-1
MENU CHUNKS ..H-1

 MENU COMMAND SELECTORS ...H-2
MENU CHUNK SELECTORS ...H-6

SCRIPT ENCRYPTION... I-1
ENCRYPTION OVERVIEW.. I-1
ENCRYPTING SCRIPTS... I-1

PLUG-INS.. I-1
DOCUMENT SCRIPTS (SCRIPT PALETTE) .. I-2
FILE SCRIPTS (TEXT FILES) ... I-2

INCLUDE FILES AND ENCRYPTION .. I-3

COLOR PALETTE.. J-1
VECTORWORKS STANDARD COLOR PALETTE...J-1
xiVectorScript Language Guide

xii VectorScript Language Guide

11

1Introduction to VectorScript
In this Chapter:

• Some
Background On
VectorScript
VectorScript is the scripting language component of the
VectorWorks software package. It is a lightweight
programming language which syntactically resembles
Pascal, incorporating many of the programming constructs
of that language. VectorScript is actually a "superset" of the
Pascal language, extending basic Pascal capabilities with a
number of APIs (application programming interfaces)
which provide access to the features and functionality of
the VectorWorks CAD engine.
This chapter provides a brief overview of the VectorScript
language; it explains what VectorScript can do and what it
can't, and provides information on features new to this
version of the language.

Some Background On VectorScript

VectorScript originated in 1988 as MiniPascal in the
MiniCAD+ 1.0 release. Later versions of MiniCAD
expanded the API, adding support for new technologies as
they were implemented. With the advent of VectorWorks in
1998, MiniPascal became VectorScript. At the same time,
VectorWorks introduced plug-ins, allowing users to create
tools, menu items, and objects using the VectorScript
language. The core VectorScript language continues to be
developed by Nemetschek North America, in parallel with
the development of the VectorWorks product.

What VectorScript Can Do

VectorScript is a relatively general purpose programming
language, and as such, it provides the ability to perform
most common programming tasks. Tasks such as
computations, storing a value, and manipulating data are all
supported by standard constructs and methods within the
VectorScript Language Guide 1-1

Introduction to VectorScript
language. VectorScript also provides extended capabilities specific to the
VectorWorks product, adding new features not found in more generalized
languages.

Object Creation and Editing

VectorScript allows you to create and edit objects directly within a
VectorWorks document. You can create primitive objects such as lines as well
as more complex objects such as multiple 3D extrudes or complex 3D solids.
VectorScript also provides the ability to edit both the geometry and graphic
attributes of these objects through extensive APIs built into the language.

Document Control

VectorScript provides APIs for controlling the various settings of individual
VectorWorks documents. These interfaces allow you to retrieve and set
geometric attributes of the document such as layer scales or visibility, along
with graphical attributes such as fill or pen color.

Extended Data

VectorScript allows you to manipulate the extended data contained within the
document to suit your specific needs. VectorScript APIs provide access to and
control over worksheets, data records, and textures which allow you to
perform "deep editing" of your documents.

What VectorScript Can't Do

VectorScript has an impressive range of capabilities; however, they are mostly
confined to the scope of VectorWorks and VectorWorks documents. Since
VectorScript is intended to be used within this context, it does not have
features that would be required for a standalone language:
• VectorScript does not have the ability to work across multiple documents

or outside of a VectorWorks document context.
• For reasons of simplicity and stability, VectorScript does not have the

ability to manage or control memory allocation.
• VectorScript does not support system level calls for file-related or other

tasks.
• VectorScript does not provide external database or other connectivity

options.
• Finally, VectorScript does not provide multithreading capabilities.
1-2 VectorScript Language Guide

Some Background On VectorScript
1

An Example Script

Let's take a look at a simple example to become more familiar with some of
the basics of a typical script. The listing below is an example of a small script
which displays a message in the VectorScript message bar, then clears the
message after five seconds:

The program begins with a statement which names the procedure and
identifies it to the VectorScript compiler:

PROCEDURE FirstExample;

CONST

kGREETING = 'Hello ';

VAR

myMessage : STRING;

BEGIN

myMessage:='VectorScript';

Message(kGREETING,myMessage);

Wait(5);

SysBeep;

ClrMessage;

END;

Run(FirstExample);

PROCEDURE FirstExample; Identifies the script to the
VectorScript compiler

CONST

kGREETING = 'Hello ';

VAR

myMessage : STRING;

BEGIN

myMessage:='VectorScript';

Message(kGREETING,myMessage);

Wait(5);
VectorScript Language Guide 1-3

Introduction to VectorScript
After this statement is what is known as the main program block. The main
program block contains areas for declaring what data storage will be needed
by the script when it is run along with an area for the source code of the script,
which provides the instructions on what actions will be performed by the
script:

The script ends with a special statement which tells the VectorScript compiler
to execute the script code preceding it:

SysBeep;

ClrMessage;

END;

Run(FirstExample);

PROCEDURE FirstExample;

CONST

kGREETING = 'Hello ';

VAR Declares data storage for the script

myMessage : STRING;

BEGIN

myMessage:='VectorScript';

Message(kGREETING,myMessage);

Wait(5);

SysBeep; The source code of the script

ClrMessage;

END;

Run(FirstExample);

PROCEDURE FirstExample;

CONST

kGREETING = 'Hello ';

VAR

myMessage : STRING;

BEGIN

myMessage:='VectorScript';
1-4 VectorScript Language Guide

Some Background On VectorScript
1

Even though some of the concepts behind the parts of the script may not be
clear to you at this point, studying the example should give you an idea of
what a script looks like and how it works. Later sections of this manual will
explain the various parts of a script and their underlying concepts in greater
detail.

New Features in VectorScript 10

VectorScript in VectorWorks 10 contains a number of significant new features
and changes. The chart below lists what is new to the language in this release,
and where it can be found in this guide:

Message(kGREETING,myMessage);

Wait(5);

SysBeep;

ClrMessage;

END;

Run(FirstExample); Tells the VectorScript compiler to run the
script

Name Purpose Location

New data types Improved readability and maintainability of
scripts

“VectorScript Data Types” on
page 3-4

New syntax for comments Allows block comment of code that already
contains {} comments

 “Comments” on page 2-2

New layout manager for custom
dialogs

Improved ease for layout of dialog box
controls

“Custom Dialogs” on page 9-2

New custom dialog controls New controls available include: multi-line
text, multi-column list, gradient slider, and
image preview popup

Chapter 9

Plug-in objects support dash and
font styles

Improved user interface for plug-ins Chapter 10

Plug-in objects support disabling
or hiding of parameters

Improved user interface for plug-ins “Setting Parameter Visibilty” on
page 10-14

International Plug-in objects Improved portability of drawings that
contain plug-in objects. When opening a
drawing that was created by a different
localized version of VectorWorks, the
plug-in objects are recognized correctly
VectorScript Language Guide 1-5

Introduction to VectorScript
Using the Rest of this Manual

The remainder of the VectorScript Language Guide is divided into four parts.
Part 1, which immediately follows this chapter, is devoted to documenting the
basic syntax and structure of the VectorScript language. Chapters 2 through 6
make for bland but necessary reading, as they cover topics necessary when
learning any new programming language. Chapters 7 through 9 cover more
advanced language topics, and are important to understanding how to design
and implement more complex scripts.
Part 2 of this guide documents VectorScript plug-in technology. This
technology, which became available in VectorWorks 8, allows you to create
parametrically defined objects which can be used and edited like built-in
VectorWorks object types. You can also use VectorScript plug-ins to define
tool items and tools created with VectorScript, which can be integrated into
your workspace and used like any other command or tool. Chapters 10 and 11
cover the fundamentals of creating plug-ins, providing the information needed
to use plug-in technology effectively. Chapters 12 through 16 provide more
detailed information on each of the plug-in types, illustrating the basics of
using each type.
Part 3 of the guide documents the development tools provided with
VectorWorks which are targeted at working with the VectorScript language.
These include practical techniques to use with any type of plug-in; these
techniques address issues that will come up in everyday use as you become
more proficient at using plug-ins in your work. Chapter 17 discusses the
various script types and how to work with them inside of VectorWorks. The
features and use of the VectorScript editor are discussed; this is the primary
means for editing your scripts. This includes a discussion on the VectorScript
debugger, an extremely useful tool for detecting and fixing errors in your
scripts, and the Plug-in editor, which lets you easily create and edit the basic
settings of your VectorScript plug-ins.

Many small changes Many small changes to improve
performance and consistency of
VectorScript

Not applicable

New functions Many new function have been added to
VectorScript

VectorScript Function Reference

New preference selectors Various new preference selectors have been
added to support DXF translation, gradient
and image fills, and other features.

Appendix F

Name Purpose Location
1-6 VectorScript Language Guide

Some Background On VectorScript
1

Finally, the appendices in Part 4 is a reference section on various topics about
VectorScript. These topics address specific issues or important information
commonly needed by most VectorScript users.

Exploring VectorScript

The best way to really learn any new programming language is to write
programs with it. As you read through this guide and through the online
function reference, you are encouraged to try out features as you learn about
them. There are several ways to do this, which make it easy to experiment
with VectorScript and learn about the language.
The most basic way to explore VectorScript is to take a VectorWorks
document and export it using the Export VectorScript option. Once you have
exported the document, use a text editor to open the document. What you will
see is a VectorScript representation of the complete VectorWorks document:
objects, layers, classes, document settings, and so on. You can compare this
script code to the source document to see how a particular setting is created
using VectorScript, or you can modify part of the script code and import it into
a blank document to see how your changes affect the document. You can also
use parts of this script code in your own scripts, either as-is or as a basis for
your own custom work.
Another useful technique for exploring VectorScript is to make use of the
Custom Tool/Attribute and Custom Selection commands of VectorWorks.
These tool items make use of VectorScript to perform actions in VectorWorks,
and you can use them to explore how to use VectorScript. The Custom Tool/
Attribute command lets you save graphical attribute and tool settings for later
use, and Custom Selection lets you define search criteria to select subsets of
objects in your document. Both these techniques can be very useful when
writing your own scripts, and you can see how to use these techniques by
opening up the scripts and examining the script code.
Possibly the best technique is to start writing your own scripts from scratch.
You can use the Resource Browser in VectorWorks to create blank document
scripts and edit them through the VectorScript editor. The VectorScript editor
provides several handy features which give you quick access to API
information and other basics of the language.
While exploring VectorScript, you will probably write scripts which don't
execute, or don't work as you expected. To correct problems which prevent
your script from executing, you can check VectorScript's Error Output file,
which will indicate the source of any fatal errors in your scripts. To correct
problems which are preventing your script from working as desired, you can
use the VectorScript debugger to trace through your code and locate the
VectorScript Language Guide 1-7

Introduction to VectorScript
problem. You can also use the basic technique used by many other languages
—insert statements which display the values of relevant variables in your
script. VectorScript provides a convenient tool for this in the Message()
statement.
Good luck with VectorScript, and have fun!
1-8 VectorScript Language Guide

22

2Lexical Structures of VectorScript
In this Chapter:

• Case Sensitivity

• Symbols

• Delimiters

• Comments

• Literals

• Identifiers

• Reserved Words

• Special Symbols
Every programming language has a set of rules which
specify how to write programs using that language. These
rules are known as the lexical structure of the language.
This structure is the lowest level syntax of a language,
specifying things like how variables are named, what
separates one program statement from the next, and so on.
This chapter explains the basic lexical structure of
VectorScript.

Case Sensitivity

VectorScript is not case sensitive. This means that items
such as language keywords, variables, function names, and
any other identifiers can be specified using uppercase,
lowercase, or a mixed case and still be compatible with
other variations of the same item. This differs from
languages such as JavaScript or C.

Symbols

In VectorScript, symbols are the atomic, or smallest
meaningful, elements of the language. VectorScript source
code is comprised of a succession of these symbols, which
form the instructions in the script that tell VectorWorks
what actions to perform. Another term for symbols is
tokens. Several rules govern how symbols are defined:
Each symbol is written as a series of ASCII characters, and
symbols must conform to the following rules:
• Each symbol must be unbroken; symbols cannot occur

inside of other symbols.
• Symbols must be comprised of 8-bit ASCII characters

(or, more technically, the ISO-8859-1 character set).
VectorScript Language Guide 2-1

Lexical Structures of VectorScript
• Symbols can have a wide variety of meanings and uses in VectorScript.
They can, among other uses, represent data storage locations, indicate
mathematical operations to be performed, or control script execution.

• Symbols are separated by other characters known as delimiters.
Delimiters separate symbols and identify them as discrete items; symbols
and delimiters must alternate.

Delimiters

Delimiters allow the VectorScript compiler to distinguish variables,
statements, and other language items as separate, meaningful objects within
the script. The principal delimiters in VectorScript are spaces, tabs, and the
newline character. VectorScript uses these characters to separate language
objects, but otherwise ignores them. Delimiters cannot be inserted within a
symbol; a delimiter placed within a symbol will break it into two separate
items (and will generate a syntax error).
Certain lexical constructs in VectorScript can also function as delimiters while
performing other functions within the script code. For example, the
VectorScript compiler can process the mathematical expression

circumference:=2*3.14159*radius

because the * character and the term := both act as delimiters in addition to
the other operations they perform. These terms, known as special symbols,
are one type of lexical construct which perform this "double duty" in
VectorScript. Others include comments and compiler directives; later
sections will cover these items in greater detail.
Since spaces, tabs, and new lines do not have meaning to the VectorScript
compiler, you are free to use them to indent and format your script code. This
type of formatting makes your scripts easy to read and understand.

Comments

Comments in VectorScript are used to place descriptive text within script
code. They are most often used to document script code for your reference
and for others who may work on your scripts. The VectorScript compiler
ignores comments.
The general syntax for VectorScript comments is:

{ <your comment text> }
2-2 VectorScript Language Guide

Literals
2

The opening and closing braces indicate the limits of the comment text.
VectorScript does not support C or C++ style comments.
It is highly recommended that you comment your code when writing your
scripts. Script comments eliminate the frustration of trying to remember
exactly how the code works when you (or others) need to revisit and modify a
script at a later date.
The alternate syntax is parenthesis asterisk:

(* <your comment text> *)

This can be used to comment out a block of the script that may already
contain comments.
For example:

Literals

Literals in VectorScript are data values that appear directly within the script
code. Literals can be numbers, text strings, the Boolean values TRUE and
FALSE, or the special value NIL. The following subsections describe each
literal type.

Integer Literals

Integer values in VectorScript are represented as a sequence of digits with an
optional minus sign prepending the sequence (for negative values).
Integer Literals

Floating-point Literals

Floating-point values may be represented using either the traditional decimal
point notation or by using exponential (scientific) notation.
A floating-point value in decimal format is represented as:
• An optional plus or minus sign, followed by

(* block comment

{Some comment line.}

{Another comment.}

*)

3 -255 1000000
VectorScript Language Guide 2-3

Lexical Structures of VectorScript
• The integral part of the value, followed by
• A decimal point and the fractional part of the number.

A floating-point value in exponential notation is represented as:
• An optional plus or minus sign, followed by
• The integral part of the value, followed by
• A decimal point and the fractional part of the number, followed by
• The letter e or E, followed by
• An optional plus or minus sign, followed by
• A one, two, or three digit integral exponent value. The preceding integral

and fractional parts of the value are multiplied by the exponent.

Floating-point Literals

VectorScript also allows you to use dimensional notation with numeric literals
and values, and will recognize common dimensional symbols for units such as
feet, inches, or meters. See “Units and Numeric Values in Scripts” on page
A-1 for details on how to use numeric literals with dimensional notation.

String Literals

Strings literals are any sequence of zero or more characters enclosed within
single quotes. They are represented using the following rules:
• Each literal must be enclosed in single quotes.
• Constants may be written on multiple lines, but return characters will be

converted to spaces.
• Blanks, tabs, and carriage returns count as valid characters within

literals.
• The maximum length of a string literal is 255 characters.
• A string literal with nothing between the quotes is assumed to be the null

string.
• To write a single quote within a string literal, use two consecutive single

quotes in the literal statement.

3.1415927 6.02e23 .333333333

-3.267E-04 -0.004568 1.1414e-15
2-4 VectorScript Language Guide

Identifiers
2

String Literals

Boolean Literals

Boolean literals in VectorScript represent a "truth value" (whether something
is true or false). Most comparison operations in VectorScript yield a Boolean
value that indicates whether the operation succeeded or failed. Since there are
two possible truth states, there are two Boolean literals in VectorScript: the
keywords TRUE and FALSE.

The NIL Literal

The last literal type in VectorScript is a specialized literal, the NIL literal.
Other literals in VectorScript represent a particular type of data. The NIL
literal is different—it represents a lack of value. In a sense, NIL is like zero
for data types other than numbers. NIL is usually associated with the HANDLE
data type, where its use indicates that no handle exists.

Identifiers

Identifiers in VectorScript are symbols which are used to refer to something
else: constants, variables, data types, procedure or function names, and other
similar items.
The rules for writing VectorScript identifiers are similar to most programming
languages:
• The first character must be a letter or an underscore.
• Subsequent characters may be a character, digit, or underscore.
• Identifiers may not contain spaces, tabs, or other characters.
• Identifiers may be any length, but the first 255 characters are significant

(i.e., recognized by the VectorScript compiler).

Identifiers which do not follow the specified rules will prevent a script from
compiling, and will generate a VectorScript compiler error.

'VectorScript' 'Nemetschek North America'

'Section A-A' 'Provide approx. 3’’ clearance'
VectorScript Language Guide 2-5

Lexical Structures of VectorScript
Value Identifiers

Invalid Identifiers

Reserved Words

Reserved words are a special class of symbol in VectorScript. Reserved
words are specialized symbols which have significant meaning to the
VectorScript compiler—they allow the compiler to determine important
information about your script and how to use that information to compile and
execute your script correctly. You should avoid using reserved words as
identifiers in your scripts, as they will cause errors and/or unexpected
behavior.
The following table lists the reserved words (also known as keywords) in
VectorScript:
VectorScript Keywords

The following table lists reserved words which have no current meaning to
the VectorScript compiler, but have been reserved for possible use in the
future. You should also avoid using them in your scripts, as they may cause
problems with future versions of the language.

num color_32bit totalLumberUsed

SUM _dummy A_very_fine_identifier

52pickup three+two SUB TOTAL

ALLOCATE AND ARRAY BEGIN

BOOLEAN CASE CHAR CONST

DIV DO DOWNTO DYNARRAY

ELSE END FALSE FOR

FUNCTION GOTO HANDLE IF

INTEGER LABEL LONGINT MOD

NIL NOT OF OR

OTHERWISE PI PROCEDURE REAL

REPEAT STRING STRUCTURE THEN

TO TRUE TYPE UNTIL

USES VAR VECTOR WHILE
2-6 VectorScript Language Guide

Special Symbols
2

Other Keywords

Since VectorScript is not case sensitive, corresponding upper and lower case
versions of terms (begin and BEGIN, for example) are equivalent and should
be avoided.

Special Symbols

Special symbols are another specialized class of symbol in VectorScript.
Special symbols, like reserved words, have significant meaning to the
VectorScript compiler. They indicate actions the compiler should take and
how to control and execute your script, as well as functioning as delimiters in
other script statements.
VectorScript Special Symbols

The table lists characters and character pairs recognized as special symbols in
the VectorScript language. The specific meanings and uses of the individual
special symbols will be covered in detail later in this guide.

FILE FORWARD IMPLEMENTATION INHERITED

INTERFACE INTRINSIC OBJECT OVERRIDE

PACKED PROGRAM SET UNIT

USES WITH

+ - *

/ ^ =

() [

] { }

. , $

<> <= >=

:= .. **
VectorScript Language Guide 2-7

Lexical Structures of VectorScript
2-8 VectorScript Language Guide

33

3Variables, Constants, and Data
Types
In this Chapter:

• Variables

• Constants

• VectorScript Data
Types
Chapter 2 introduced the concept of literals, data values
embedded directly within your VectorScript code. Scripts
that operate only on such static data are rather limited and
inflexible; to move beyond this limitation, VectorScript
uses constants and variables. Constants and variables are
names (more technically, identifiers) that which have
associated data values; we say that the variable or constant
"stores" or "contains" the value.
Constants and variables provide a way to store and
manipulate values by name. In the case of constants, the
value cannot be changed during script execution; in the
case of variables, however, the value associated with a
name may be changed at any point by assigning a new
value to the name (hence the term "variable").
Another important VectorScript concept is that of data
types. As the name implies, data types are the kinds of data
that can be manipulated by your scripts. Data types provide
structure and meaning to the information being
manipulated by a script, allowing VectorScript to process it
efficiently and safely.
This chapter explains how to use variables and constants in
your scripts, and provides detailed information on the
various data types available in VectorScript.

Variables

Variables are created through a variable declaration. The
variable declaration associates the variable name identifier
with a specific data type. This data type tells the
VectorScript compiler how much memory storage will need
to be allocated for the data that will be stored in that
location.
The general syntax for a variable declaration is:
VectorScript Language Guide 3-1

Variables, Constants, and Data Types
<identifier>(,<identifier>,...) : <data type>;

Multiple identifiers of a single data type can be specified by a comma
delimited list.
VectorScript Type Declarations

For simple data and array types, these declarations occur in one location in the
script, known as the VAR block. This area of the script is located at the
beginning of the main program block, prior to the main body of script code,
and is indicated by the VAR keyword. The VAR block is the only location
where variables can be declared; unlike languages such as Basic or
JavaScript, variables cannot be declared in the source code of the script.
VectorScript uses the information provided by the VAR block to allocate
memory needed for the script to execute properly. In the example below, two
variables are declared to provide data storage for the script:

Note that values are not actually assigned to the variables declared in the VAR
block. The actual assignment of values into the variable storage locations
occurs in the body of the script. The purpose of the VAR block is to define
storage requirements, not to define data.

jobName:STRING; i,j,k:INTEGER;

PROCEDURE Example_1;

VAR

s:STRING;

i:INTEGER;

BEGIN

s:='VectorScript';

i:=2;

Message('Hello ',s);

Wait(i);

ClrMessage;

END;

Run(Example_1);
3-2 VectorScript Language Guide

Constants
3

Constants

Constants are created using a constant definition. Constant definitions also
associate an identifier with a storage location in memory, but unlike variable
declarations, a value is immediately assigned to the location. The value of the
constant cannot be modified by a script after it is defined.
The general syntax for a constant definition is:

<identifier> = <value>;

Constants, unlike variables, do not require an explicit data type.
Constant definitions also occur at one location in the script, the CONST
block. This area of the script is located at the beginning of the main program
block, prior to both the main body of script code and the VAR block. The block
is indicated by using the CONST keyword. Like the VAR block, the CONST
block is the only location where this type of storage declaration (constant
definitions) is allowed.
In the following example, constants are used to define values that could be
used to customize the script for a specific target, such as a particular market:

PROCEDURE Example_1;

CONST

{capitalized to distinguish them from variables}

LOCAL_GREETING_ENGLISH = 'Hello ';

LOCAL_GREETING_FRENCH = 'Bonjour ';

VAR

s:STRING;

i:INTEGER;

BEGIN

s:='VectorScript';

i:=2;

Message(LOCAL_GREETING_ENGLISH,s);

Wait(i);

ClrMessage;

END;

Run(Example_1);
VectorScript Language Guide 3-3

Variables, Constants, and Data Types
Once the value is defined, it can be used in the script as needed. Note again
that no data type is required for constants; VectorScript will implicitly convert
the value to the proper type if needed.
Constants can store any basic data type (INTEGER, LONGINT, REAL, STRING,
CHAR, or BOOLEAN). VectorScript also supports the use of trigonometric,
ordinal, and other mathematical functions in defining constants. The
following table lists functions which can be used to define constants in scripts.
Functions Supported in the Constant Definition Block

VectorScript Data Types

Any data used in a script must have an associated data type. Data types allow
the VectorScript compiler to determine how much memory to allocate for
storage during script execution, as well as how to act on that data when
performing calculations or other operations.
A data type must be specified whenever a variable is declared. Also,
whenever a procedure or function is declared, a data type must be specified
for each parameter as well as the return value in the case of a function
(procedures and functions are covered in greater detail in “User Defined
Functions” on page 8-1).
There are two categories of data types within VectorScript: fundamental
types and user-defined types. Fundamental types are predefined by the
compiler, while user-defined types are defined within the script code itself.

Fundamental Data Types – Numeric

VectorScript supports three numeric data types: INTEGER, LONGINT, and
REAL.

INTEGER

Values of type INTEGER are a subset of the whole numbers. INTEGER values
may be in a range of -32767 to 32767, and may not contain any fractional or
decimal parts. Numbers which contain fractional or decimal parts will be
truncated if assigned to a variable of type INTEGER.

Abs() Sqr() Sqrt() Ord() Chr()

Trunc() Round() Sin() Cos() Tan()

Asin() Acos() Atan() Ln() Exp()
3-4 VectorScript Language Guide

VectorScript Data Types
3

In VectorScript, variables of type INTEGER will only accept INTEGER values
or LONGINT values which fall within the valid INTEGER range.

LONGINT

Values of type LONGINT are also a subset of the whole numbers. LONGINT
values can represent a larger range of values than the INTEGER type, with the
range for LONGINT values spanning from -2,147,183,647 to
2,147,183,647.
LONGINT values, like INTEGER values, may not contain any fractional or
decimal parts. Numbers which contain fractional or decimal parts will be
truncated if assigned to a variable of type LONGINT. In VectorScript, variables
of type LONGINT will accept either LONGINT or INTEGER values.
Arithmetic operations involving values of types INTEGER and LONGINT
follow these rules:
• All integer constants in the valid value range of type INTEGER are

considered to be of type INTEGER. All integer constants in the range of
type LONGINT, but not in the range of type INTEGER, are considered to
be of type LONGINT.

• When both operands of an operator (or the single operand of a unary
operator) are of type INTEGER, the result is of type INTEGER (truncated
if it falls outside the range of values which can be represented by that
type). Similarly, if both operands are of type LONGINT, the result is of
type LONGINT.

• When one operand is of type LONGINT and the other is of type INTEGER,
the INTEGER operand is converted to LONGINT and the result is of type
LONGINT. If this value is assigned to a variable of type INTEGER, it is
truncated.

REAL

Values of type REAL (also known as floating-point values) are a subset of the
real numbers, and can store fractional or decimal parts of a number. Valid
REAL values fall within a range of 1.9 x 10e-4951 to 1.1 x 10e4932.
In VectorScript, variables of type REAL will accept REAL, LONGINT, or
INTEGER values. LONGINT and INTEGER values will be converted to the
REAL data type before being assigned to a variable.
VectorScript Language Guide 3-5

Variables, Constants, and Data Types
Fundamental Data Types – Text

“Literals” on page 2-3 described how string literals may be included in a
script by enclosing them in single quotes. VectorScript also allows string
values to be stored as data during script execution, and supports three data
types for representing this data within scripts: STRING, CHAR, and CHAR
arrays. This section will discuss the first two types; CHAR arrays will be
discussed in detail in “Extended String Support with CHAR Arrays” on page
4-7.

STRING

STRING values are used to store and manipulate textual data within scripts. A
variable of type STRING will store up to 255 characters of textual data, and
STRING data values will support any valid ASCII character. Data values of
type STRING are also compatible with string and character literals.

CHAR

CHAR data values store a single ASCII character, and they are a distinct type
from the STRING data type. CHAR values can be used to obtain and convert
single characters from STRING values, and they are often used to define
special characters for use in a script.
STRING and CHAR values are compatible types, and values of these types may
be assigned and compared directly.

Fundamental Data Types – Other

VectorScript also supports the following data types: BOOLEAN, HANDLE, and
VECTOR.

BOOLEAN

BOOLEAN data values may hold one of two values, the truth values (and
reserved words) TRUE or FALSE. Values of the BOOLEAN type are more
closely similar to Java or JavaScript boolean values in that they are a distinct
type; unlike C or C++, they do not use numeric values to simulate TRUE or
FALSE.
Boolean values are generally the result of comparison operations that occur
within a script, and they are most often used for decision making during script
execution.
3-6 VectorScript Language Guide

VectorScript Data Types
3

HANDLE

HANDLE values in VectorScript are used to store a reference to other
VectorWorks data in memory. Values of type HANDLE are most often used to
reference data related to objects, layers, classes, or other VectorWorks internal
structures. VectorScript makes extensive use of HANDLE values throughout the
VectorScript API as an easy means of retrieving or setting this data directly
from a script.
Aside from a reference to data located in memory, HANDLE values can also be
set to the value NIL. As explained in “The NIL Literal” on page 2-5, the value
NIL indicates no reference exists or was found.
Since HANDLE values are references to dynamic memory locations, they
should not be stored or otherwise treated as if they were permanent reference
to a given item within a document. Storing and reusing HANDLE values can
cause errors or other unpredictable behavior within your scripts.

VECTOR

VectorScript provides the specialized VECTOR data type to support vector
operations within VectorScript. Vectors are used to represent quantities which
have an associated displacement, characterized by a direction and a distance
(or magnitude). A VectorScript VECTOR consists of three component REAL
values which can also be treated as a single unit value.
When used in conjunction with the vector API of the VectorScript language,
VECTOR values can be highly useful in performing complex geometric
computations in scripts. Details on this API may be found in the VectorScript
Function Reference.

POINT

The POINT data type is used to store the coordinates of a 2D point. It is a
compound data type consisting of two component REAL values: x and y. The
value is assumed to be in the units of the current document, and relative to the
document origin.

POINT3D

The POINT3D data type is used to store the coordinates of a point in 3D space.
It is a compound data type consisting of three component REAL values: x, y,
and z. The value is assumed to be in the units of the current document, and
relative to document origin.
VectorScript Language Guide 3-7

Variables, Constants, and Data Types
RGBCOLOR

The RGBCOLOR data type can store a color as three components: red, green,
and blue. Each component is a LONGINT value.
3-8 VectorScript Language Guide

44

4Arrays in VectorScript
In this Chapter:

• Static Arrays

• Dynamic Arrays
An array in VectorScript is a collection of data values
referenced by a single identifier. Arrays allow large
amounts of data to be stored and manipulated during script
execution.
The data values contained within an array are stored in a
contiguous set of memory locations, and can be accessed
either randomly or in sequential order. In VectorScript, you
can access this data by means of an array index. An array
index is an INTEGER value corresponding to a specific
storage location within the array. VectorScript arrays are
indexed (that is, an individual data value is retrieved from
the array) by enclosing the index value in square brackets
after the array name. For example, if my_data is an array,
and i is an INTEGER variable, then

my_data[i]

is an element of the array.
VectorScript provides support for two types of arrays:
static arrays (ARRAY), and dynamic arrays
(DYNARRAY). This chapter will explain the syntax and
conventions for using arrays in your scripts.

Static Arrays

Static arrays (ARRAY) are declared using the same method
as used for variables, except that a series of storage
locations is allocated for the array values, rather than a
single location typical of a variable. Static array
declarations occur in the VAR block along with other
variables.
Static arrays come in one- and two-dimensional varieties.
The general syntax for one-dimensional static arrays is:

<identifier> : ARRAY [m..n] OF <data type>;
VectorScript Language Guide 4-1

Arrays in VectorScript
In the array declaration, the term [m..n] indicates the dimension, or size, of
the array. An array declared with a dimension of [1..10] will allocate ten
contiguous storage locations in memory. Static arrays support any valid
fundamental data type, as well as the user-defined STRUCTURE type (see
“Creating Structures” on page 5-1 for details).
To retrieve a value from an element of a one-dimensional array, the same
bracket notation described earlier is used. The array name should appear to
the left of the brackets, and a non-negative INTEGER value representing the
array index should appear within the brackets:

An array index may be any constant non-negative INTEGER value or
expression which resolves to such a value.
The following example illustrates the practical use of a one-dimensional
array:

In the example, a ten element array of STRING is declared, and the script code
begins with assignment of values to the elements of the array. In the
assignments, constants are used to represent the array indices, but a variable
or other identifier which evaluates to an INTEGER value could have been used

j := values[3];

values[23] := 15.5;

total := price[i] + tax;

PROCEDURE Example_41;

VAR

s:STRING;

i:INTEGER;

words:ARRAY[1..10] OF STRING;

BEGIN

words[1]:='VectorScript ';

words[2]:='is ';

words[3]:='a ';

words[4]:='fine ';

words[5]:='language.';

FOR i:=1 TO 5 DO s:=Concat(s,words[i]);

Message(s);

END;

Run(Example_41);
4-2 VectorScript Language Guide

Dynamic Arrays
4

in their place. Such an identifier is used later in the Concat() function call to
reference array elements.
Two-dimensional static arrays extend the syntax of a one-dimensional array
by adding an additional array index to the declaration:

<identifier> : ARRAY [m..n,r..s] OF <data type>;

In the declaration for the two-dimensional array, the first index value defines
the number of "rows" in the array, while the second index defines the number
of "columns." In such a two-dimensional array, n x s contiguous storage
locations will be allocated to hold data values (when m and r are 1).
Accessing an element in a two-dimensional array is not very different from a
one-dimensional array:

If we think of the two-dimensional array in terms of rows and columns, we
would use two index values to indicate the row and column position of the
array element to be indexed.

Dynamic Arrays

Dynamic arrays (DYNARRAY) in VectorScript are similar to static arrays, with
the notable exception of how they are dimensioned, or sized. While static
arrays are explicitly sized when they are declared in the VAR block of your
script, the size of a dynamic array is declared during the actual execution of a
script. Dynamic arrays can also be resized at any point during script execution
to suit your data storage requirements. As with static arrays, dynamic arrays
support any valid fundamental data type, as well as the user-defined
STRUCTURE type (see “Creating Structures” on page 5-1 for details).
Dynamic arrays can also be specified as one- or two-dimensional. The general
syntax for a one-dimensional dynamic array is:

<identifier> : DYNARRAY [] OF <data type>;

Note that, unlike static arrays, dynamic arrays do not include the size
(dimension) of the array in the brackets. This size will be defined when your
script is executed. The syntax for a two-dimensional dynamic array is very
similar:

<identifier> : DYNARRAY [,] OF <data type>;

j := values[3,5];

values[23,1] := 15.5;

total := price[i,j] + tax;
VectorScript Language Guide 4-3

Arrays in VectorScript
As with the one-dimensional dynamic array, note that the index dimensions
are not specified in the declaration. The comma, however, is needed to
indicate that the array will have two dimensions.
To dimension a dynamic array, VectorScript uses the ALLOCATE keyword
(along with a reference to the array) to reserve sufficient space in memory for
all the data values that will be stored in the array. ALLOCATE can be used to
initially dimension the array prior to first use, or it can be used to
re-dimension the array should more (or less) storage space be required. For
instance, to allocate five storage locations to an array int_values storing
INTEGER values, you could use the following call:

ALLOCATE int_values[1..5];

The range specified inside the brackets indicates the number of elements to be
created and reserved for storage.
The following example illustrates practical use of a dynamic array within a
script:

PROCEDURE Example_42;

VAR

i,j,numtxt : INTEGER;

h : HANDLE;

textStore: DYNARRAY[] OF STRING;

BEGIN

numtxt:=Count(((T=Text) & (SEL=TRUE)));

j:=1;

ALLOCATE textStore[1..numtxt];

h:=FSActLayer;

WHILE (h <> NIL) DO BEGIN

IF (GetType(h) = 10) THEN BEGIN

textStore[j]:=GetText(h);

j:=j+1;

END;
4-4 VectorScript Language Guide

Dynamic Arrays
4

In the example, a dynamic array is used to store the text of any selected strings
that may be found in the selection set. The script begins by declaring the
dynamic array, textStore, along with several other variables. In the VAR
block declaration, the dynamic array is specified, but no space is allocated at
this point for storage.
The body of the script begins with storing the number of selected text objects
found within the selection set in the variable numtxt. This value is then used
with the ALLOCATE keyword:

ALLOCATE textStore[1..numtxt];

to initialize the amount of storage space in the dynamic array.
Next, the script processes the selected items, and when it encounters a text
object, stores the text in an element of the array. Since the text objects within

h:=NextSObj(h);

END;

ALLOCATE textStore[1..numtxt+2];

TextOrigin(2,2);

CreateText('New text 1');

numtxt:=numtxt+1;

textStore[numtxt]:=GetText(LNewObj);

TextOrigin(2,4);

CreateText('New text 2');

numtxt:=numtxt+1;

textStore[numtxt]:=GetText(LNewObj);

FOR i:=1 TO numtxt DO BEGIN

Message('Array element ',i,' contains ', textStore[i]);

Wait(1);

END;

END;

Run(Example_42);
VectorScript Language Guide 4-5

Arrays in VectorScript
the selection set were counted, textStore is sized to provide sufficient
storage within the array for the exact number of text strings that were found.
Once all the objects have been processed, the array can be redimensioned to
allocate more or less space as needed. In the example, additional storage
space is reserved with another call to ALLOCATE,

ALLOCATE textStore[1..numtxt+2];

and use the newly added storage locations to store the text created by the
script. The script concludes by displaying the values currently stored within
the textStore array.
Note that the existing data values stored in the array are preserved when the
array is re-dimensioned. If an array is redimensioned to a larger size during
execution of the script, VectorScript will preserve all the values currently in
the array. VectorScript will also attempt to preserve as many data values as
possible if an array is redimensioned to a smaller size. In the case of
dimensioning to a smaller size, any values contained in locations beyond the
newly defined boundaries of the array will be lost.

Performance Considerations with Dynamic Arrays

Dynamic arrays require more "overhead" than comparable static arrays in
order to allocate memory during script execution and to maintain array values.
As a result, scripts using dynamic arrays may execute more slowly than
scripts using static arrays.
It is highly recommended that you use static arrays wherever possible for the
best possible script performance. If dynamic arrays are required in your
scripts, avoid making frequent calls to ALLOCATE to reserve storage. Use
ALLOCATE only when absolutely necessary to change reserved storage during
script execution, and avoid any use of ALLOCATE inside of a loop or repetition
statement (see “Repetition Statements” on page 7-7 for details on these
statement types).

Vectors and Array Notation

As mentioned earlier in this chapter, you can create arrays of any fundamental
data type, which includes the VECTOR type. Vectors support two methods of
accessing the fields of the vector: array-style brackets and dot notation.
To access a vector field using array-style notation, you can append an
additional set of brackets to the array reference, and specify the vectors' field
index within the second set of brackets. For example,
4-6 VectorScript Language Guide

Dynamic Arrays
4

vec_field[5][2];

will access the second field (the y-component) of the vector in element 5 of
the one-dimensional array vec_field. Two-dimensional arrays can also use
this notation; if vec_field2 is a two-dimensional array, then

vec_field2[4,5][2];

will access the second field of the vector located in the fourth row and fifth
column of the array.
To access a vector field using dot notation, simply append the dot (field
access) operator and field identifier to the array reference you want to index.
Using the previous example,

vec_field[5].y;

will perform the same operation, accessing the second field (the
y-component) of the vector in element 5 of vec_field. Two dimensional
arrays work in a similar fashion; the reference

vec_field2[4,5].y;

will access the y-component of the vector located in the fourth row and fifth
column of vec_field2.

Extended String Support with CHAR Arrays

VectorScript also supports a specialized set of functionality when using arrays
of the CHAR data type. This functionality with static or dynamic arrays of the
CHAR type provides you with a means of handling extended strings up to
32,767 characters long within your scripts.
Arrays of type CHAR can be used in place of the STRING data type in certain
operations within VectorScript. The following sections provide details on
operations supporting CHAR arrays and STRINGs in VectorScript.

Assignments Between STRING Values and CHAR Arrays

Both static CHAR arrays (ARRAY OF CHAR) and dynamic CHAR arrays
(DYNARRAY OF CHAR) can be used in place of STRING values when
assigning to or retrieving from a STRING variable.
When using either static or dynamic CHAR arrays to assign a value to a
STRING variable, if the array length exceeds 255 characters, the first 255
characters will be copied into the string variable, and the remaining characters
in the array will be dropped. Values of less than 255 characters will be
completely copied into the STRING variable.
VectorScript Language Guide 4-7

Arrays in VectorScript
Assigning values from a STRING variable or constant to a static CHAR array
works in a similar fashion. If the CHAR array has a length less than the length
of the STRING value to be assigned, the value will be truncated to fit the array.
For instance:

In the example, the STRING value assigned to the variable part_name would
be truncated to

Acme Left-handed

when assigned to the array. When using static CHAR arrays to handle STRING
values, be sure to declare the size of the array to accommodate the longest
STRING value expected to be stored within the array.
In contrast to static CHAR arrays, dynamic CHAR arrays will automatically size
to the length of the STRING value being assigned to the array. For example:

If the array mytext was declared but not previously used, the assignment
would size the array length to 36, and the array would contain the string

PROCEDURE Example_43;

VAR

Part_name: STRING;

NameArray: ARRAY[1..16] OF CHAR;

BEGIN

part_name:= 'Acme Left-handed Smoke Shifter';

NameArray:=part_name;

END;

Run(Example_43);

PROCEDURE Example_44;

VAR

sampleString: STRING;

mytext: DYNARRAY[] OF CHAR;

BEGIN

sampleString:= 'VectorScript now handles lots of text';

mytext:= sampleString;

END;

Run(Example_44);
4-8 VectorScript Language Guide

Dynamic Arrays
4

VectorScript now handles lots of text

If mytext had been previously assigned a value, the assignment would resize
the array to a length of 36 and assign the STRING value to the array. The
values previously held in the array would be lost.

Retrieving or Assigning Strings to Text Objects

VectorScript allows STRING values greater than 255 characters long in text
objects to be set or retrieved via CHAR arrays. The VectorScript API functions
GetText() and SetText() support the use of a CHAR array in place of a
STRING value.
To set or retrieve the text string, use the name of the CHAR array (without
brackets) in place of the STRING parameter or variable. For example:

In the example, you would be limited to returning the first 255 characters of
the text string. By using a dynamic array:

PROCEDURE Example_45;

VAR

h : HANDLE;

theText : STRING;

textArray : DYNARRAY[] OF CHAR;

BEGIN

h:=FSActLayer;

theText:= GetText(h);

CreateText(theText);

END;

Run(Example_45);

PROCEDURE Example_45;

VAR

h : HANDLE;

theText : STRING;

textArray : DYNARRAY[] OF CHAR;

BEGIN

h:=FSActLayer;

textArray:= GetText(h);

CreateText(textArray);
VectorScript Language Guide 4-9

Arrays in VectorScript
You can retrieve the entire text string and store it in the dynamic array. The
entire text string can then be used in other operations.

Retrieving or Assigning Strings to Record Fields

VectorScript also allows you to set and retrieve STRING values greater than
255 characters long contained in record fields via the use of CHAR arrays. The
VectorScript API functions GetRField() and SetRField() support the
use of a CHAR array in place of a STRING value.
To set or retrieve the record field string, use the name of the CHAR array
(without brackets) in place of the STRING parameter or variable. For example:

In the example, using a STRING variable would be limited to retrieving only
the first 255 characters of the text string stored within the field. By using a
CHAR array:

END;

Run(Example_45);

PROCEDURE Example_46;

VAR

theText : STRING;

longtext : ARRAY[1..512] OF CHAR;

BEGIN

theText:= GetRField(FSActLayer,'Boring Info','Boring Notes');

CreateText(theText);

END;

Run(Example_46);

PROCEDURE Example_46;

VAR

theText : STRING;

longtext : ARRAY[1..512] OF CHAR;

BEGIN

longtext:= GetRField(FSActLayer,'Boring Info','Boring Notes');

CreateText(textArray);

END;

Run(Example_46);
4-10 VectorScript Language Guide

Dynamic Arrays
4

In the example, up to 512 characters of text from the field can be retrieved and
stored in the array. Alternately, the dynamic array could be sized to support
whatever amount of text might be found in the record field (up to 32K of text).

Performing Standard STRING-Related Operations

VectorScript also provides support in its string API for handling the extended
strings in CHAR arrays. Operations such as obtaining string length, substring
position, and string concatenation can be performed on CHAR arrays just as
they can on STRING values.
To use CHAR arrays with string API functions, just use the CHAR array in place
of a STRING variable for a given function parameter or return value. For
example:

In the example, a CHAR array is used in place of a STRING as the source value
for the Copy() function. The result of the Copy() operation is then assigned
to a STRING variable. String API function calls support both static and
dynamic CHAR arrays.
The table below lists all VectorScript API functions with CHAR array support.
VectorScript Functions with CHAR Array Support

PROCEDURE Example_47;

VAR

s : STRING;

textArray :ARRAY [1..32] OF CHAR;

BEGIN

textArray:= 'A VectorScript text string';

s:= Copy(textArray,3,12);

END;

Run(Example_47);

Len() Pos() Concat() Copy() Delete() Insert()

UprString() GetText() SetText() GetRField() SetRField() CreateText()
VectorScript Language Guide 4-11

Arrays in VectorScript
4-12 VectorScript Language Guide

55

5Structures
In this Chapter:

• Creating
Structures

• Accessing Values
in a Structure
A structure in VectorScript is a collection of one or more
variables which are grouped together under a single
identifier for convenient handling. Structures help to
organize complex data into groupings that may be treated
as a single "unit" instead of separate entities.
Note: The standard Pascal term for this type of construct

is record. To avoid possible conflicts and confusion
with other VectorWorks or VectorScript features,
VectorScript refers to this construct as a structure.

The variables contained within a structure are known as the
members of the structure. These variables may be of any
fundamental type found in VectorScript. Static and CHAR
arrays are also supported as structure members, as are other
structures (which are known as nested structures).
Dynamic arrays are not supported in structures.

Creating Structures

Structures are declared in a special section of your scripts,
the TYPE block. This optional section, which is located
between the CONST and VAR sections of the main program
block, is the only location where structures may be
declared. There is no limit to the number of structures that
may be declared in a TYPE block.
The general syntax for a structure declaration is:

<structure name> = STRUCTURE

<identifier>[,<identifier>,…] : <data type>;

<identifier>[,<identifier>,…] : <data type>;

…

…

VectorScript Language Guide 5-1

Structures
The declaration begins with the identifier used to refer to the structure.
Following this identifier is the special symbol = and the keyword
STRUCTURE, which indicates that the member declarations which follow
should be grouped under the specified identifier name. The members of a
structure are declared just as you would declare any other variable, with all
the same rules for declaring variables applying to the member declarations.
The structure declaration is terminated by using the END keyword.
Structure declarations, unlike variables or constants, do not reserve storage
space for data. Instead, they define a new data type which can be used in your
scripts as you would any of the fundamental data types. Such a user-defined
type can be used to declare variables or arrays in the same manner as using
INTEGER, STRING, or other fundamental types.
For example, suppose you wish to define a structure which represents a 2D
point. The structure which represents the point can be defined as shown
below:

The structure POINT contains two members of type REAL, but no space is
allocated until variables or arrays are declared using the structure as a
user-defined type:

<identifier>[,<identifier>,…] : <data type>;

END;

Point = STRUCTURE

 x,y : REAL;

END;

PROCEDURE StructExample1;

TYPE

POINT = STRUCTURE

x,y : REAL;

END;

VAR

centerPt, target : POINT;

vertex_list : ARRAY[1..20] OF POINT;

BEGIN

END;

Run(StructExample1);
5-2 VectorScript Language Guide

Accessing Values in a Structure
5

The centerPt and target variables each contain storage for the two REAL
values contained within the structure, and the vertex_list array reserves
sufficient memory to store twenty POINT items, or forty REAL values. The
POINT structure acts as a "template" to use when defining data value storage
for your script.

Accessing Values in a Structure

Members within a structure may be referred to directly using the . (structure
member) operator. This operator is used in conjunction with the structure
name and the member name you intend to reference in the form:

<structure name>.<member name>

This format, also known as "dot notation," gives you direct access to the value
within the specified member. This type of structure member reference can be
used in place of any simple variable to retrieve or assign values:

This notation can also be used when comparing values or when passing values
to VectorScript or user-defined functions:

Arrays of structures also support the use of dot notation to reference
individual structure members:

The reference to a member of a structure in an array element is created by
appending the member operator and the member name to an array element
reference.
As mentioned before, structures support the use of static arrays as data
members. Arrays within structures present a bit more of a syntactical
challenge when referencing a member value, but otherwise they are not
difficult to use. To reference a value in an array element within a structure,

centerPt.x:= 0;

total:= windowData.cost + tax;

partData.location:= GetLName(ActLayer);

GetObject(partData.name);

vertices[5].x:= 2.67;

vertices[6].y:= vertices[5].y + 2.6;
VectorScript Language Guide 5-3

Structures
append the member operator and a member array element reference to the
structure instance identifier:

As with non-member arrays, any expression or constant which resolves to an
INTEGER value can be used when indexing the member array element.
It is also possible to have arrays of structures which have arrays as members.
Once again, a combination of the member operator with a reference to the
desired array element is used to obtain the data value. In this case, array
element references will appear on both sides of the member operator. This can
lead to some rather interesting looking syntax within a script:

These expressions are perfectly valid; however, they do require extra attention
to ensure the correct syntax is specified.
Structures containing other structures as members also present an additional
layer of complexity when referencing members of the nested structure. The
key in this situation is to use member chaining to descend through the data
hierarchy to the desired value. For example:

p.name[5]:= 'Marvin';

total:= total + winAssembly1.cost[k];

doorAssembly[3].cost[4]:= 24.55;

subtotal:=subtotal+doorAssembly[i].cost[j]+doorAssembly[i].cost[j+1];

PROCEDURE Example_51;

TYPE

POINT = STRUCTURE

 x,y : REAL;

END;

CIRCLE = STRUCTURE

ctr : POINT;

radius : REAL;

END;

VAR

c1,c2 : CIRCLE;

BEGIN

c1.ctr.x:= 4.5;

c2.ctr.y:= c1.ctr.y;
5-4 VectorScript Language Guide

Accessing Values in a Structure
5

The CIRCLE structure declaration makes use of an instance of the POINT
structure to more logically organize data. To reference either the x- or
y-component of the POINT instance, chain the members of the nested
structures:

References to the member ctr and its members x and y are chained together
using the member operator to reference and access the values in the nested
structure. Chaining of members in nested structures can be used repeatedly in
scripts to access structure members which may be nested several levels deep.

END;

Run(Example_51);

c1.ctr.x:= 4.5;

c2.ctr.y:= c1.ctr.y;
VectorScript Language Guide 5-5

Structures
5-6 VectorScript Language Guide

66

6Expressions
In this Chapter:

• Simple
Expressions

• Complex
Expressions

• Operator
Precedence

• Operator
Associativity

• Arithmetic
Operators

• Comparison
Operators

• Logical Operators

• Other Operators
Every value in VectorScript is designated by way of an
expression. An expression is a "phrase" in VectorScript
that can be evaluated to produce a value. Expressions can
be simple, consisting of a single component expressing the
value, or complex, expressing the value through a
combination of other expressions and operations on them.

Simple Expressions

Simple expressions use a single component, or operand,
to express a value. Simple expressions in VectorScript are
most often constants (such as string or numeric literals),
variable names, or function names.
The value of a simple constant expression is essentially the
constant itself. The value of a simple variable expression is
the value that is associated with the variable identifier. The
value of a function expression is the value returned when
the function has completed execution.
Simple Expressions

Complex Expressions

Complex expressions, also known as compound
expressions, derive their values from combining or

1.7 Numeric literal

'This is VectorScript' String literal

TRUE Boolean literal

NIL The value NIL

i The variable "i"

sum The variable "sum"
VectorScript Language Guide 6-1

Expressions
transforming the values of other expressions. For example, the value of
expression

i + 1.7;

is derived from the combining values of 1.7 and i. Since we know that both
1.7 and i are also simple expressions which each have their own value, they
can be combined to obtain a value.
In the expression above, the resulting value is determined by adding the
values of the two simpler expressions. The expression uses an operator, in
this case the plus sign, to perform an operation (addition) on the simpler
expressions and to combine them into a more complex expression.
The expressions combined by the plus sign in the example above can also be
referred to as operands. Operators are usually grouped by the number of
operands that they require in order to perform their intended operations.
VectorScript supports two types of operators, unary operators, which
require a single operand, and binary operators, which require two
operands.
Each operator produces a resulting value whose data type is determined both
by the operator and the operands from which the value was derived. Operators
may have restrictions on the types of operands with which they are
compatible, and all these factors impact the data type of the resulting value.

Operator Precedence

Just as it does in mathematics, operator precedence in VectorScript
controls the order in which operations are performed. Operators having a
higher precedence have their operations performed before those having a
lower precedence. In the expression

p = q + r * s;

the multiplication operator (*) has higher precedence than the addition
operator, so the multiplication operation is performed before the addition. The
assignment operator (=) has the lowest precedence of all the operators, so the
association, or assignment, of the value to the variable p occurs only after the
other operations are completed.
Operator precedence can be overridden by the explicit use of parentheses. To
force the addition operation to be performed first in the prior example,
parentheses would be used to modify the expression to be:

p = (q + r) * s;
6-2 VectorScript Language Guide

Operator Associativity
6

In everyday use, it is good practice to use parentheses if you are unsure about
precedence in order to make the evaluation order explicit.

Operator Associativity

Operator associativity specifies the order in which operations of the same
precedence are performed. Left-to-right associativity means that operations
are performed left to right when operators are of equal precedence. For
example, the expression

p = q + r + s;

is equivalent to the expression

p = ((q + r) + s);

because the addition operator has left-to-right associativity. Conversely, the
expression

w = x = y = z;

is equivalent to the expression

w = (x = (y = z));

because the assignment operator has right-to-left associativity.

Arithmetic Operators

Arithmetic operators perform such familiar mathematical operations as
addition or multiplication on the specified operands. Arithmetic operators are
restricted to working on numeric VectorScript data types. The table below
summarizes the arithmetic operators available in VectorScript.

Operator Operand Precedence Associativity Operation

- any number 1 R-L Unary minus (negation)

^ any number 2 L-R Exponentiation

* any number 2 L-R Multiplication

/ any number 2 L-R Division

DIV INTEGER,LONGINT 2 L-R Integer Division

MOD INTEGER,LONGINT 2 L-R Modulo (remainder division)

+ any number 3 L-R Addition

- any number 3 L-R Subtraction
VectorScript Language Guide 6-3

Expressions
Unary negation (-)

When - is used as a unary operator preceding a single operand, it performs a
negation operation on the operand. That is, it converts a positive value to an
equivalently negative value, or it converts a negative value to its equivalently
positive value.
Addition (+)

The + operator adds two numeric operands. This operator is limited to
addition only; unlike in many other languages, this operator may NOT be
used to concatenate strings.
Subtraction (-)

The - operator subtracts the second operand from the first. Both operands
must be numeric.
Multiplication (*)

The * operator multiplies its two numeric operands.
Division (/)

The / operator divides the first operand by its second operand. The operator
performs floating-point division, always returning a value of type REAL even
when both operands are of INTEGER or LONGINT type.
Integer Division (DIV)

The DIV operator divides the first operand by its second operand, always
returning a result of type INTEGER or LONGINT. The value of i DIV j is the
mathematical quotient of i/j, rounded down to the nearest INTEGER or
LONGINT value. For example, the operation

j:= 36 DIV 5;

will return a result of 7, which is assigned to the variable j.
Remainder Division (MOD)

The MOD operator divides the first operand by the second and returns the
remainder of the operation as a result of type INTEGER. For example, the
operation

k:= 36 MOD 5;

will return a value of 1, which is assigned to k.
6-4 VectorScript Language Guide

Comparison Operators
6

Exponentiation (^)

The ^ operator raises the first operand to the power indicated by the second
operand; that is, x^y is equivalent to x to the yth power.

Comparison Operators

Comparison operators in VectorScript are used to compare values of various
types and return a Boolean value (true or false) result. The results of
expressions using comparison operators are most often used to control the
flow of script execution.
The table below summarizes the comparison operators available in
VectorScript.
Comparison Operators

Less Than (<)

The < operator evaluates as TRUE if the first operand is less than the second
operand; otherwise it will evaluate as FALSE. Operands may be numbers,
strings, or characters; strings are evaluated alphabetically, by character
encoding.
Less Than or Equal To (<=)

The <= operator evaluates as TRUE if the first operand is less than or equal to
the second operand; otherwise it will evaluate as FALSE. Operands may be
numbers, strings, or characters; strings are evaluated alphabetically, by
character encoding.
Greater Than (>)

The > operator evaluates as TRUE if the first operand is greater than the
second operand; otherwise it will evaluate as FALSE. Operands may be
numbers, strings, or characters; strings are evaluated alphabetically, by
character encoding.

Operator Operand Precedence Associativity Operation

< Number, STRING, CHAR 4 L-R Less than

<= Number, STRING, CHAR 4 L-R Less than or equal to

> Number, STRING, CHAR 4 L-R Greater than

>= Number, STRING, CHAR 4 L-R Greater than or equal to

= Any type 5 L-R Equal to

<> Any type 5 L-R Not equal to
VectorScript Language Guide 6-5

Expressions
Greater Than or Equal To (>=)

The >= operator evaluates as TRUE if the first operand is greater than or equal
to the second operand; otherwise it will evaluate as FALSE. Operands may be
numbers, strings, or characters; strings are evaluated alphabetically, by
character encoding.
Equality (=)

The = operator returns TRUE if its two operands are exactly equal, and returns
FALSE if they are not equal. The operands may be of any type. For operands
of type STRING, the values are compared on a character-by-character basis,
and must contain exactly the same characters.
Inequality (<>)

The <> operator tests for the exact opposite of the = operator. If two equal
values are compared using the inequality operator, the resulting value will be
FALSE. Comparison of two values which are not equal will yield a TRUE
result.

Logical Operators

Logical operators perform the rough equivalent of a comparison operation on
Boolean values. Logical operators use Boolean algebra to evaluate their
operands and return the result of the operation. In programming, they are most
often used to express complex comparisons which involve multiple operands
by linking smaller expressions together.
The following table summarizes the comparison operators available in
VectorScript.
Logical Operators

Logical NOT (NOT)

The unary NOT operator is used preceding a single operand of BOOLEAN type
to inverts the value of the operand. For example, if a variable z of BOOLEAN
type contains the value TRUE, then the expression NOT z will return a value of

Operator Operand Precedence Associativity Operation

NOT BOOLEAN 1 R-L Logical NOT

AND BOOLEAN 7 L-R Logical AND

& BOOLEAN 7 L-R Logical AND (short-circuit)

OR BOOLEAN 8 L-R Logical OR

| BOOLEAN 8 L-R Logical OR (short-circuit)
6-6 VectorScript Language Guide

Logical Operators
6

FALSE. This operation also holds for the results of more complex expressions;
for example, if the result of the expression p>=q evaluates to FALSE, the
expression NOT(p>=q) will evaluate to TRUE.
Logical AND (AND)

The AND operator evaluates to TRUE if and only if the first operand and the
second operand both are TRUE. If either operand evaluates to FALSE, the
result returned will be FALSE. Expressions using the AND operator will always
evaluate both operands before returning the result of the expression,
regardless of the value of the first operand.
Logical short-circuit AND (&)

The & operator evaluates to TRUE if and only if the first operand and the
second operand are both TRUE. If either operand evaluates to FALSE, the
result returned will be FALSE. Expressions using the & operator will not
evaluate the second operand if the first operand returns a value of FALSE. If
the second operand should have any side effects (such as those produced by a
function call returning value) they may not occur. In general, it best to avoid
expressions such as the following which combine side effects with the &
operator:

(a = b) & SetVectorFill(h,'Stone'){ function call may not occur }

Logical OR (OR)

The OR operator evaluates to TRUE if the first operand or the second operand
are TRUE. Both operands must evaluate to FALSE for the result returned to be
FALSE. Expressions using the OR operator will always evaluate both operands
before returning the result of the expression, regardless of the value of the first
operand.
Logical Short-circuit OR (|)

The OR operator evaluates to TRUE if the first operand or the second operand
are TRUE. Both operands must evaluate to FALSE for the result returned to be
FALSE. Expressions using the | operator will not evaluate the second operand
if the first operand returns a value of TRUE. If the second operand should have
any side effects (such as those produced by a function call returning value)
they may not occur. In general, it is best to avoid expressions such as the
following which combine side effects with the | operator:

(a = b) | SetVectorFill(h,'Stone') { function call may not occur }
VectorScript Language Guide 6-7

Expressions
Other Operators

Assignment Operator (:=)

As described in “Variables” on page 3-1, variables are associated with
(assigned) a value. This value can also be modified at any point during
execution of your scripts. Both these operations are performed using the
assignment operator.
The := operator expects the first (left-hand) operand to be a variable, array,
element, or vector field/structure member. The second (right-hand) operand
can be an arbitrary value of any type, though the value must be compatible
with the data type of the first operand. The value of the expression is the value
of the right-hand operand.
The assignment operator has right-to-left associativity, which means that the
second operand is evaluated first in the expression (and is how VectorScript
determines if the value and the variable are of compatible types).
Array Access Operator ([])

As mentioned in “Arrays in VectorScript” on page 4-1, array elements are
accessed using square brackets [], along with the positional index of the
value to be retrieved. This bracket pair is treated as an operator in
VectorScript.
The [] operator uses as the name of an array as its first operand (to the left of
the brackets). The second operand, which goes between the brackets, can be
any expression which evaluates to an INTEGER value.
If the array specified as the first operand is two-dimensional, the array access
operator requires a third operand, which also goes between the brackets. In
this case, both the second and third operands (which are separated by a
comma) may be any expression evaluating to an INTEGER value.
For example, the expression

price[3]

will evaluate to the value in the third element of the price array. For a two
dimensional array plant_data, the expression

plant_data[2,i+4]

will evaluate to the value contained in the element specified by [2,i+4]. The
expression i+4 must evaluate to an INTEGER value in order to be used as an
operand in the expression.
6-8 VectorScript Language Guide

Other Operators
6

Vector / Structure Member Access Operator (.)

The . operator in VectorScript is a specialized operator that allows you to
directly access values contained within certain data types, notably vectors and
structures.
The . operator requires a vector or structure as its first (left) operand. The
second operand, unlike most operators, must be either a vector field or
structure member name; no expressions are allowed. Vector field identifiers
must be one of the three valid vector field names— x, y, or z. Structure
member names should correspond to a valid member in the structure type
declaration.
For example, the expression:

distance_vector1.x

will evaluate to the value in the x field of the vector distance_vector1.
When dealing with a structure, the expression

window_data.cost

will evaluate to the value within the member cost of the structure instance
window_data.
VectorScript Language Guide 6-9

Expressions
6-10 VectorScript Language Guide

77

7Statements
In this Chapter:

• Assignment
Statements

• Compound
Statements

• Procedure
Statements

• GOTO Statements

• Repetition
Statements

• Conditional
Statements
Statements in VectorScript are the actions of the
language. Whereas expressions in VectorScript can be
thought of as "phrases" that can be evaluated to a value,
expressions don't "do" anything. To make something
happen, you need to use a VectorScript statement, which is
akin to a complete sentence or a command. Statements in
VectorScript perform the execution tasks of your script,
managing your script data and controlling the flow of script
execution.
Statements in VectorScript are always found in "blocks,"
and a script is simply a large block containing a collection
of statements. Each statement in VectorScript is terminated
with a semi-colon, which indicates to the VectorScript
compiler where each statement ends.
This chapter describes the various statement types found in
VectorScript and explains their syntax in detail.

Assignment Statements

Assignment statements set the value of a variable or
like identifier in a script. Assignment statements use the
assignment operator (:=) to set the value of the identifier
on the left-hand side of the symbol to the value of the
constant or identifier on the right-hand side of the symbol.
This may also be thought of as assigning the value of the
identifier on the right-hand side to the identifier on the left.
The generalized syntax for assignment statements is:

<identifier> := <identifier or constant value>;

The identifier on the left-hand side may be any
VectorScript data type; it may also be an array element, a
full array reference, or a structure field.
VectorScript Language Guide 7-1

Statements
For example:

From the example, it is evident that the assignment statement is very flexible.
The example makes use of constants, variables, structure fields, and function
return values when assigning values to an identifier. Note also that more than

PROCEDURE Example_71;

CONST

kInitialValue = 0;

TYPE

POINT = STRUCTURE

x,y:REAL;

END;

VAR

s : STRING;

i : INTEGER;

h : HANDLE;

textdata : ARRAY[1..100] OF STRING;

p1,p2 : POINT;

BEGIN

{ assignment of constant value to a variable }

i:= kInitialValue;

{ assignment of return value to variable }

h:= FSObject(ActLayer);

{ assignment of return value to variable }

s:= GetText(h);

{ assignment of variable value to array element }

textdata[1]:= s;

{ assignment of values to structure members }

p1.x:= 0; p1.y:= 2;

{ assignment of member value to another member }

p2.x:= p1.y;

{ assignment of member value to another member }

p1.y:= p2.x;

END;

Run(Example_71);
7-2 VectorScript Language Guide

Assignment Statements
7

one statement can reside on a single line, as long as they are separated by a
semi-colon indicating the end of each statement.
While assignment statements are very flexible in how they get or assign
values, they do observe some rules regarding compatibility of data types.
When writing assignment statements, the following rules should be observed:
• A variable of REAL type may be set to a REAL, INTEGER, or LONGINT

value, as well as any expression yielding those results.
• A LONGINT variable may be set to a LONGINT or INTEGER value or any

expression yielding such a value. It may also be set to a REAL value, but
the value will be truncated and rounded to the nearest whole value.

• An INTEGER variable may be set to an INTEGER value, or any
expression yielding such a value. It may also be set to a REAL value, but
the value will be truncated and rounded to the nearest whole value.

• A BOOLEAN variable may be set a BOOLEAN value or an expression
yielding such a value.

• A STRING variable may be set to a STRING or CHAR value or any
expression yielding those values. It may also be set to an ARRAY or
DYNARRAY OF CHAR value; however, the value in the array will be
truncated to 255 characters.

• A CHAR variable may be set to a CHAR value or any expression yielding a
CHAR value. It may also be set to a STRING value, but will be truncated if
the STRING is greater than 1 character in length.

• A HANDLE variable may be set to a HANDLE value or any expression
yielding a HANDLE value.

Assignment statements also support block copying of values in arrays when
they are used without an array element index in a script. This method
facilitates transferring large amounts of data without the need for copying on
an element-by-element basis. For example:

PROCEDURE Example_72;

VAR

values1,values2:ARRAY[1..5] OF INTEGER;

BEGIN

values1[1]:= 2;

values1[2]:= 4;

values1[3]:= 8;

values1[4]:= 16;
VectorScript Language Guide 7-3

Statements
In order to transfer the values in values1 to values2, it would appear that
multiple assignment statements are needed, one for each array element. For
large arrays, this would be a time-consuming task. Fortunately, VectorScript
overloads (extends the functionality of) the assignment operator so that
operation to copy the values becomes a single statement:

The assignment statement copies the data from the values1 array directly
into the corresponding elements of the values2 array. This sort of
assignment operation can be also be performed with dynamic arrays; in both
cases, however, the dimensions of the arrays on both sides of the assignment
operator must be exactly the same in order to complete the operation.
Vectors and structures may also be copied in this manner; the member values
of the item on the right side of the assignment operator will be copied into the
corresponding member fields of the item on the left side of the operator. For
example, the values in a vector direction_vector1 could be copied into
another vector:

new_vector:= direction_vector1;

The values in the fields of direction_vector1 would be copied into the
fields of new_vector without the need for assignment statements for each
field.

values1[5]:= 32;

END;

Run(Example_72);

PROCEDURE Example_72;

VAR

values1,values2:ARRAY[1..5] OF INTEGER;

BEGIN

values1[1]:= 2;

values1[2]:= 4;

values1[3]:= 8;

values1[4]:= 16;

values1[5]:= 32;

values2:= values1;

END;

Run(Example_72);
7-4 VectorScript Language Guide

Compound Statements
7

Compound Statements

VectorScript provides compound statements as a way to execute several
statements as if they were a single statement. This capability is quite useful
when it is necessary to combine statements and execute them together—for
instance, when being executed as a branch of a control statement or in a loop.
To create a compound statement from a sequence of statements, preface the
first statement in the sequence with the BEGIN keyword. The sequence is
terminated with the END keyword, and each statement in the sequence is
separated by a semi-colon. For example:

The three statements contained within the BEGIN and END keywords will be
executed together when the compound statement is called.
The generalized syntax for compound statements is:

Compound statements may also be nested; the VectorScript compiler will
associate the last BEGIN keyword with the next END keyword in the script, the
second-last BEGIN with the following END, and so on. Mismatched
BEGIN-END pairs will cause a VectorScript error to occur.
If you noticed that the body of a script looks suspiciously similar to a
compound statement, you would be correct; the script body of any
VectorScript script, user-defined procedure, or user-defined function is in fact
a single compound statement.

Procedure Statements

Procedure statements in VectorScript call predefined VectorScript API
function calls as well as user-defined procedures and functions to perform
actions within a script. With VectorScript API function calls, the actions are
performed directly by VectorWorks; user-defined function calls encapsulate

BEGIN

i:=1;

j:= (3*2)+5;

Message(i+j);

END;

BEGIN

<statement>; [<statement>; <statement>;...]

END;
VectorScript Language Guide 7-5

Statements
other VectorScript source code; which is executed when the procedure
statement is called in a script.
The general syntax for procedure statements is:

<procedure identifier>[(<parameter list>)][:<return value>];

Function calls such as:

Message('Hello VectorScript');

or

SetSelect(h);

are examples of procedure statements in VectorScript. For more details on
user-defined procedures and functions, see “User-Defined Procedures” on
page 8-1 and “User-Defined Functions” on page 8-4.

GOTO Statements

GOTO statements transfer execution of the script to the beginning of the
statement following the label associated with the GOTO. For example:

If the condition (j MOD 2) = 0 evaluates to TRUE, execution in the script is
transferred immediately to the beginning of the statement i:= i + 1, and
the expression i:= i * 5 is never executed.
The general syntax for a GOTO statement is:

PROCEDURE Example_73;

LABEL 100;

VAR

i,j : INTEGER;

BEGIN

i:= 10;

j:= 2;

IF (j MOD 2 = 0) THEN GOTO 100;

i:= i * 5;

100: i:= i + 1;

Message(i);

END;

Run(Example_73);
7-6 VectorScript Language Guide

Repetition Statements
7

GOTO <label>;

GOTO statements have several cautions which must be observed whenever
using them:
• GOTO statements can only transfer execution within the same procedure,

function, or main body of a script. They cannot be used to jump between
procedures or between scripts.

• The destination of a GOTO statement must always be the beginning of a
statement.

• Jumping to statements that are contained within the structure of other
statements can have undefined effects; the VectorScript compiler will not
recognize this action as an error.

Repetition Statements

VectorScript supports three methods of executing a section of a script
repeatedly—the process referred to as looping. The repetition statements
supported by VectorScript are the FOR statement, the WHILE statement, and
the REPEAT statement.

The FOR Statement

The FOR statement in VectorScript executes the same script section a specified
number of times. This value is held within a control variable which is
evaluated by the FOR statement to determine whether execution of the script
section should continue.
The general syntax for FOR statements is:

The initial and final values, or limit values, of the control variable are set in
the FOR statement. These values may be INTEGER, LONGINT, or CHAR values,
and can be either constants or values derived from an expression. The value of
the control variable is modified and evaluated by the FOR statement prior to
each pass through the script section controlled by the statement.
FOR statements come in two varieties: the FOR-TO statement, and the
FOR-DOWNTO statement. In the FOR-TO statement, the value of the control
variable is incremented (increased) by one on each pass through the section
controlled by the statement. For example:

FOR <control variable> := <initial value> [TO | DOWNTO]
<limit value>

DO <statement>;
VectorScript Language Guide 7-7

Statements
FOR i:=1 TO 10 DO Message('Pass ',i,' through FOR loop.');

In the FOR-TO statement, the control variable i will be incremented by one
and evaluated on each pass before the Message() function call is executed.
In a FOR-DOWNTO statement, the value of the control variable is decremented
(decreased) by a value of one on each pass until the limit value is reached. For
example:

In the FOR statement, the value of i is decremented on each pass until it
reaches the limit value of one. Also note that a compound statement can be
used to execute any number of other statements within the FOR statement
structure.
The following cautions should be observed when working with FOR
statements:
• Do not try to change the value of the control variable from within the

FOR statement; doing so can lead to unpredictable results.
• Do not include the control variable in either of the limit expressions of

the FOR statement.
• If the limit values are equal, the FOR statement will execute its controlled

statement exactly once.
• If the limit values are reversed, the FOR statement will be skipped.

The WHILE Statement

The WHILE statement in VectorScript will execute the same script section as
long as the control expression, which returns a BOOLEAN value, evaluates to
TRUE. The general syntax for the WHILE statement is:

WHILE <control expression> DO <statement>;

j:= 9;

FOR i:=10 DOWNTO 1 DO BEGIN

Message('Pass ',i-j,'(',i,') through FOR loop.');

j:= j - 2;

END;
7-8 VectorScript Language Guide

Repetition Statements
7

The control expression is evaluated prior to executing the controlled
statement, and as such it can bypass the controlled statement altogether. For
example:

In the example, a handle to the first object on the active layer is returned by
the FActLayer() function call. If there are no objects on the active layer, the
calls to select the object and obtain the next object on the layer are bypassed.
If there were objects on the layer, the example would automatically exit the
loop when it ran out of objects to process. This is because the NextObj() call
returns NIL when it cannot return a handle, and since the WHILE statement
will evaluate the expression before executing its controlled statement, the
example would bypass the controlled statement once the expression evaluated
to FALSE (h = NIL). Unlike a FOR statement, the WHILE statement allows
execution to be controlled from within the controlled statement.

The REPEAT Statement

The REPEAT statement, like the WHILE statement, executes the same script
section repeatedly until its control expression evaluates to FALSE. Unlike the
WHILE statement, however, the REPEAT statement evaluates the control
expression after executing its controlled statement. This means that the
controlled statement will always execute at least once.
The general syntax for the REPEAT statement is:

REPEAT <statement> UNTIL <control expression>;

PROCEDURE Example_74;

VAR

h:HANDLE;

BEGIN

h:= FActLayer;

WHILE (h <> NIL) DO BEGIN

 SetSelect(h);

h:=NextObj(h);

END;

END;

Run(Example_74);
VectorScript Language Guide 7-9

Statements
The example from the WHILE statement section could easily be rewritten
using a REPEAT statement:

In this format, the statements within the REPEAT-UNTIL structure would be
executed at least once, whether or not h was initially NIL, which could cause
detrimental effects or errors. Generally speaking, REPEAT statements should
be used in conditions where executing the controlled statement will not have a
negative impact. WHILE statements are most useful when the condition
controlling their execution may have already been satisfied; REPEAT
statements, on the other hand, are most useful when the condition can be
satisfied only by executing the statement.
Also note that REPEAT statements do not require the use of BEGIN or END, as
the REPEAT and UNTIL keywords create their own compound statement out
of the statements between them.

Conditional Statements

VectorScript supports two methods of making decisions within a script which
affect the flow of execution—a process referred to as branching. The
conditional statements supported by VectorScript are the IF statement and the
CASE statement.

The IF Statement

The VectorScript IF statement evaluates a BOOLEAN control expression and
executes a controlled statement only if the expression evaluates to TRUE. IF

PROCEDURE Example_75;

VAR

h:HANDLE;

BEGIN

h:= FActLayer;

REPEAT

 SetSelect(h);

h:=NextObj(h);

UNTIL (h = NIL);

END;

Run(Example_75);
7-10 VectorScript Language Guide

Conditional Statements
7

statements can also be optionally written to execute a second statement if the
control expression evaluates to FALSE.
The general syntax for IF statements is:

IF <control expression> THEN <statement> [ELSE <statement>];

When an IF statement executes, the control expression is evaluated to obtain
a BOOLEAN result. If the result is TRUE, the statement after the THEN keyword
is executed and the IF statement is exited. If the expression evaluates to
FALSE, the statement is skipped unless the ELSE keyword and a statement are
encountered. In this case, the statement after the ELSE keyword is executed.
For example:

IF (i mod 2) THEN Message('Even value') ELSE Message('Odd
value');

If the value in i is even, then the expression i MOD 2 will evaluate to TRUE
and the statement Message('Even value') will be executed. If the value
of i is odd, then Message('Odd value') will be executed.
Note that the statement contained between the THEN and ELSE keywords does
not require a semi-colon after it; in this case the ELSE keyword indicates the
end of the statement. If the ELSE keyword were omitted, a semicolon would
be required.
Like other statements, the IF statement supports the use of a compound
statement as the controlled statement. IF statements can also be nested; that
is, the statement following the THEN keyword may also be an IF statement.
Nesting allows you to construct statements which can take actions based on
the results of several mutually exclusive conditions.
Nested IF statements can rapidly become confusing:

PROCEDURE Example_76;

VAR

i:INTEGER;

BEGIN

i:= Ord('c');

IF (i > 48) THEN IF (i > 57) THEN IF (i > 65) THEN IF (i > 90) THEN

IF (i > 97) THEN IF(i < 123) THEN Message('Lower case alpha')

ELSE Message('Out of range') ELSE Message('Some punctuation')

ELSE Message('Upper case alpha') ELSE Message('Some punctuation')

ELSE Message('Number') ELSE Message('Out of range');
VectorScript Language Guide 7-11

Statements
If the matching of IF and THEN becomes confusing, you can clarify the source
code by using compound statements or by applying indentation and
comments:

END;

Run(Example_76);

PROCEDURE Example_76;

VAR

i:INTEGER;

BEGIN

i:= Ord('c');

{out of range}

IF (i > 48) THEN

{number}

IF (i > 57) THEN

{punctuation}

IF (i > 65) THEN

{upper alpha}

IF (i > 90) THEN

{punctuation}

IF (i > 97) THEN

{lower alpha}

IF(i < 123) THEN

Message('Lower case alpha')

ELSE

Message('Out of range')

ELSE

Message('Some punctuation')

ELSE

Message('Upper case alpha')

ELSE

Message('Some punctuation')

ELSE

Message('Number')

ELSE
7-12 VectorScript Language Guide

Conditional Statements
7

The CASE Statement

The VectorScript CASE statement lets you specify a list of alternative
statements to be executed, associating a constant with each statement to
identify it. When the CASE statement is executed it evaluates the controlling
expression, and if the result matches one of the constants, it then executes the
associated statement. An optional OTHERWISE clause allows a different
statement to be executed if no other option was selected from the list of
constants.
The general syntax for a CASE statement is:

The control expression may evaluate to an INTEGER, CHAR, or BOOLEAN
value. For example:

Message('Out of range');

END;

Run(Example_76);

CASE <control expression> OF

<constant>:<statement>;

<constant>:<statement>;

...

...

[OTHERWISE <statement>;]

END;

PROCEDURE Example_77;

VAR

j:INTEGER;

BEGIN

j:= Ord('C');

CASE j OF

49: Message('Number');

77: Message('Upper case alpha');

110: Message('Lower case alpha');

OTHERWISE Message('Out of range');

END;
VectorScript Language Guide 7-13

Statements
The variable j evaluates to an INTEGER value, and this value is compared to
the list of constants in the CASE statement. In the example, the value of j falls
outside of the listed constants, so the OTHERWISE clause is executed.
CASE statements provide some flexibility when specifying constants. For
instance, there may be applications of the CASE statement where several cases
will need to execute the same code. Rather than use redundant options, the
CASE statement lets you specify a comma delimited list of constants for a
single CASE option:

Should the control expression evaluate to any of the values in the list, the
associated statement will be executed.
For longer contiguous lists of constant values, the CASE statement also
supports the use of ranges within the CASE statement constant specification.
These ranges specify a contiguous list of constant values to be associated with
a statement to be executed:

END;

Run(Example_77);

PROCEDURE Example_78;

VAR

j:INTEGER;

BEGIN

j:= Ord('C');

CASE j OF

49: Message('Number');

58,59,60,61,62,63,64: Message('Non alpha printable character');

110: Message('Lower case alpha');

OTHERWISE Message('Out of range');

END;

END;

Run(Example_78);

PROCEDURE Example_78;

VAR

j:INTEGER;

BEGIN

j:= Ord('C');

CASE j OF
7-14 VectorScript Language Guide

Conditional Statements
7

Ranges and comma delimited lists may be mixed for further flexibility in
associating constants with an executable statement:

In the example, it can be seen that the available methods of specifying CASE
statement constants provide the ability to specify complex options for
branching in a very concise format. Ranges and lists also work with the other
supported constant types:

48..57: Message('Number');

58,59,60,61,62,63,64: Message('Non alpha printable character');

65..90: Message('Upper case alpha');

97..122: Message('Lower case alpha');

OTHERWISE Message('Out of range');

END;

END;

Run(Example_78);

PROCEDURE Example_78;

VAR

j:INTEGER;

BEGIN

j:= Ord('C');

CASE j OF

48..57: Message('Number');

33..47,58..64,91..96:Message('Non alpha printable character');

65..90: Message('Upper case alpha');

97..122: Message('Lower case alpha');

128,133,134,168..170: Message('Special characters');

OTHERWISE Message('Out of range');

END;

END;

Run(Example_78);

PROCEDURE Example_78;

VAR

j:CHAR;

BEGIN

j:= 'C';
VectorScript Language Guide 7-15

Statements
Like other statements, CASE statements can also support the use of compound
statements as the controlled statement to be executed. Extending this concept,
it is also possible to create nested CASE statements to handle even more
complex branching in scripts:

Some cautions to be observed when using CASE statements:

CASE j OF

'0'..'9': Message('Number');

'A'..'Z': Message('Upper case alpha');

'a'..'z': Message('Lower case alpha');

OTHERWISE Message('Out of range');

END;

END;

Run(Example_78);

PROCEDURE Example_78;

VAR

j:CHAR;

BEGIN

j:= 'C';

CASE j OF

'0'..'9': Message('Number');

'A'..'Z': Message('Upper case alpha');

'a'..'z': Message('Lower case alpha');

OTHERWISE BEGIN

CASE Ord(j) OF

33..47,58..64,91..96:Message('Non alpha printables');

128..159:Message('Accented characters');

168..170: Message('Special characters');

OTHERWISE Message('Out of range');

END;

END;

END;

END;

Run(Example_78);
7-16 VectorScript Language Guide

Conditional Statements
7

• Constant values in the CASE statement must have the same type as the
value of the controlling expression.

• Constant types may not be mixed in a single CASE statement.
VectorScript Language Guide 7-17

Statements
7-18 VectorScript Language Guide

88

8User Defined Functions
In this Chapter:

• User-Defined
Procedures

• User-Defined
Functions

• Parameters

• Program Blocks
and Block Scope
In addition to the over 700 function calls built into the API,
VectorScript also lets you create your own user-defined
functions. By creating these custom functions, you can
break large script tasks into smaller ones, and build on the
work that you have done previously instead of starting over
from scratch. Another term for user-defined functions is
subroutines which, as the name implies, are pieces of
script code which perform tasks within the main script.
User-defined functions come in two varieties:
procedures, which perform actions but are not associated
with a value, and functions, which perform actions and
also have an associated value that can be used in situations
requiring a constant or expression-derived value.
This chapter describes in detail how to create and use your
own procedures and functions, and addresses some of the
issues involved in using them within scripts.

User-Defined Procedures

User-defined procedure subroutines are the most common
type of subroutine. They allow commonly used code to be
“encapsulated” under a single identifier which can easily be
called from within a script.
User-defined procedures are declared after the definition
(CONST, TYPE, and VAR) blocks of a script, but before the
script body. To create a user-defined procedure to use
within a script, you will need to create a procedure
declaration statement which associates an identifier with
the subroutine and defines how the subroutine is to be used.
The general syntax for user-defined procedures is:

PROCEDURE <procedure identifier>[(<parameter list>)]
VectorScript Language Guide 8-1

User Defined Functions
The procedure declaration begins with the PROCEDURE keyword, and is
followed by the identifier to be associated with the subroutine block. After
this identifier comes the parameter list for the procedure. The parameter list
provides a means for moving data in and out of the subroutine, and the
identifiers in the list may be used just like variables within the subroutine
block. Parameters and parameter lists will be covered in more detail later in
this chapter.
After the procedure declaration statement has been created, the actual
working code of the subroutine is defined. Just like a script, subroutines may
have any of the standard VectorScript definition blocks (LABEL, CONST,
TYPE, or VAR) as well as a script body containing the script code to be
executed when the subroutine is called from elsewhere in your script. For
example, suppose you wish to take the following script:

and modify it so that the sum of squares code can be easily reused whenever it
is needed. To do this, a subroutine is needed to contain the code which
performs the operation. Creating the subroutine begins by writing a procedure
declaration statement and the skeleton of the subroutine:

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

sum:= n*(n+1)*(2*n+1)/6;

Message('The sum of squares is: ',sum);

END;

Run(SubrExample2);

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

BEGIN

END;

BEGIN

n:=IntDialog('Enter the limit value','0');
8-2 VectorScript Language Guide

User-Defined Procedures
8

The declaration statement associates the identifier SumOfSquares with the
new subroutine. Following the subroutine identifier is the parameter list for
the subroutine. This optional list defines a method of moving data in and out
of the subroutine. While it is possible to refer to values in the enclosing
program blocks directly, doing so would eliminate the ability to easily use the
subroutine in other code, which is one of the major advantages of using
subroutines.
The parameter list declares a set of identifiers (and their associated data types)
that will be used to pass data to and from the subroutine; the VAR keyword
indicates an identifier that will be used to pass data out of the subroutine to the
calling code. Identifiers in the parameter list can be treated as variables and
used within the subroutine script code.
When the subroutine is called in the script, the parameter list as shown in the
declaration is replaced with a list of variable identifiers that provide and/or
receive the data being passed through the parameters. The order and types of
the variable identifiers must exactly match those in the declaration.
Now that the skeleton of the subroutine is in place, the summation script code
can be moved into the subroutine and modified to work with the subroutine:

{sum of squares for the first n integers}

sum:= n*(n+1)*(2*n+1)/6;

Message('The sum of squares is: ',sum);

END;

Run(SubrExample2);

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

BEGIN

result:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

sum:= n*(n+1)*(2*n+1)/6;

Message('The sum of squares is: ',sum);
VectorScript Language Guide 8-3

User Defined Functions
The final change needed to the script is to modify the main body of the script
to use the subroutine:

Note again that when the script is called in the main program block, the
SumOfSquares parameter list is replaced by the variables n and sum. The
value contained in n is passed into the subroutine, where it is referred to
through the identifier limit. The resulting value is stored in the local
identifier result, and is passed back to the main program block and stored in
the variable sum when the subroutine completes its execution.
By using a subroutine, the script can be broken up into manageable chunks
which are easy to understand and to debug. The SumOfSquares subroutine
can also be reused as many times as needed in the current script, and the
subroutine can be copied and used in other scripts.

User-Defined Functions

User-defined functions incorporate all the features of user-defined procedures,
but they have one additional feature which makes them extremely useful
when writing scripts: an associated value. User-defined functions, unlike
procedures, can pass data out of the subroutine through a return value,
which associates the value with the subroutine identifier. This means that, like

END;

Run(SubrExample2);

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

BEGIN

result:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

SumOfSquares(n,sum);

Message('The sum of squares is: ',sum);

END;

Run(SubrExample2);
8-4 VectorScript Language Guide

User-Defined Functions
8

a variable, a function can be used wherever a value is required—in an
expression, an assignment statement, or other operation in a script.
User-defined functions, like procedures, are declared between the definition
blocks and the body of the script. To create a user-defined function, a function
declaration statement will be used to associate an identifier with the
subroutine and define how it will be used. The general syntax for user-defined
functions is:

FUNCTION <procedure identifier>[(<parameter list>)]:<return value type>

Just like procedures, the declaration begins with a keyword, in this case the
FUNCTION keyword, and is followed by the identifier to be associated with
the subroutine block. Next comes the parameter list for the function.
Parameter lists for user-defined functions work exactly like they do for
user-defined procedures, so everything learned in the previous section applies
here as well.
User-defined function declarations have one additional requirement: a return
value type after the parameter list. This data type indicates what type of data
will be passed through the return value mechanism and will be associated
with the identifier.
After the function declaration has been created, define the actual working
code of the subroutine in the same way you would for a user-defined
procedure.
To illustrate the differences between procedure and function subroutines, look
at the sum of squares example from the previous section:

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

BEGIN

result:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

SumOfSquares(n,sum);

Message('The sum of squares is: ',sum);
VectorScript Language Guide 8-5

User Defined Functions
The SumOfSquares subroutine provides a handy reusable piece of code
which is very useful, but the result is returned to the main script in such a way
that it is difficult for anyone reading the script code to determine how the
value is obtained. In this instance, the return value mechanism of a function
subroutine can be used to provide a much more user-friendly method. To
create the function subroutine, the first step is to make some changes to the
declaration statement:

The first change to the declaration is to convert the keyword from
PROCEDURE to FUNCTION to indicate the correct type of subroutine. The
output parameter result is then eliminated, since a return value will be used for
the subroutine’s output. Next, a return value data type is added to the
declaration.
Once the declaration statement has been modified, one additional change to
the subroutine is needed to associate the result value with the subroutine
identifier. VectorScript performs this association by using an assignment
statement, except that the identifier used on the left side of the statement is the
subroutine identifier:

END;

Run(SubrExample2);

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

FUNCTION SumOfSquares(limit:INTEGER):INTEGER;

BEGIN

result:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

SumOfSquares(n,sum);

Message('The sum of squares is: ',sum);

END;

Run(SubrExample2);

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;
8-6 VectorScript Language Guide

User-Defined Functions
8

All that is left to do now is to modify the main script to match the new syntax
of the function:

As you can see, using a function subroutine in this instance makes for much
more readable code, and simplifies the interface of the subroutine as well. In
general, functions are best suited to subroutines which return a value that is
the result of a calculation or other similar operation. Procedures should be
used when creating a subroutine that performs an operation which does not
return a value.

FUNCTION SumOfSquares(limit:INTEGER):INTEGER;

BEGIN

SumOfSquares:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

SumOfSquares(n,sum);

Message('The sum of squares is: ',sum);

END;

PROCEDURE SubrExample2;

VAR

n,sum:INTEGER;

FUNCTION SumOfSquares(limit:INTEGER):INTEGER;

BEGIN

SumOfSquares:= limit*(limit+1)*(2*limit+1)/6;

END;

BEGIN

n:=IntDialog('Enter the limit value','0');

{sum of squares for the first n integers}

sum:= SumOfSquares(n);

Message('The sum of squares is: ',sum);

END;

Run(SubrExample2);
VectorScript Language Guide 8-7

User Defined Functions
Parameters

User-defined subroutines, like the built-in functions of the VectorScript API,
make use of parameters and parameter lists to move data values in and out of
subroutines.

Formal and Actual Parameters

Formal parameters in VectorScript refer to the parameters which are
defined in the parameter lists of built-in or user-defined functions. Formal
parameters provide the data interface "template" for the function, indicating
the order and typing of the values that will be passed in and out of the function
call. Actual parameters refer to the expressions or values that are passed
by a function in the body of the script. For example, in the declaration
statement of the subroutine SumOfSquares:

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

The identifier’s limit and result are both formal parameters of the subroutine
procedure. When SumOfSquares is used in the script:

SumOfSquares(n,sum);

the subroutine procedure has two actual parameters, n and sum. These actual
parameters contain the data used and returned by the function call. Checking
the VAR block of the script, notice that the data types of the two identifiers
match the types found in the formal parameter list.

Value and Variable Parameters

Value parameters in VectorScript are parameters which are used to pass
data values into a subroutine. Within the subroutine, they act just like local
variables except that they obtain their initial value from a corresponding
actual parameter in the parameter list. In the SumOfSquares example:

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

the identifier limit is a value parameter, or more fully, a formal value
parameter. In the function call of the main script:

SumOfSquares(n,sum);

the value contained in the variable n would be assigned to the value parameter
limit for use within the subroutine.
Variable parameters in VectorScript are the opposite of value
parameters—they are used to pass data values out of a subroutine. They are
8-8 VectorScript Language Guide

Program Blocks and Block Scope
8

denoted by the VAR keyword which precedes them in the parameter list, and
like value parameters, act as local variables within the subroutine. In the
SumOfSquares example:

PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

the identifier result is a formal variable parameter, which can be used
within the subroutine script code to pass values back to the calling code. In the
function call of the main script:

SumOfSquares(n,sum);

the value contained in the variable parameter result would be assigned to
the variable sum when the subroutine finished execution.

Program Blocks and Block Scope

As mentioned in “An Example Script” on page 1-3, a script can be referred to
as a program block, which is the basic unit of VectorScript source code.
Program blocks consist of a block declaration statement, sections such as the
CONST, TYPE or VAR blocks for declaring or defining data within the block,
and the body of the block, which contains the VectorScript source code to be
executed. User-defined functions extend this concept, and are in fact smaller
program blocks nested within the main program block that is your script.
Each subroutine that will be used in a script is a self-contained program block,
with its own data declarations and body. Subroutine blocks can also have
nested subroutine blocks of their own, with other data declarations and script
code. Such nesting of subroutine blocks brings up an important concept,
block scope, that should be considered whenever writing subroutines for
scripts.
Block scope describes the area of a script where a given identifier is
considered valid and has a defined value associated with it. Whenever a
variable, constant, or structure is declared in a program block, the item is said
to be local to that program block. This means that the item will only be valid
and have a defined value in the block where it was declared, as well as in any
areas which are enclosed by that block. For example:

PROCEDURE Main;

 Subroutine “A”()
 Subroutine “B” ()
 BEGIN
 END;
VectorScript Language Guide 8-9

User Defined Functions
In the example, the scope of an identifier is determined by its location:

An identifier is considered undefined outside the program block where it was
declared and may not be accessed or referred to in script code outside of the
block. If the block in which the identifier is declared is a subroutine, this
means that the identifier will be undefined in any block enclosing the
subroutine. Any attempt to refer to or evaluate the item from source code in
the blocks enclosing the subroutine will cause an error and will cause your
script to fail.
The following example also illustrates the concept of block scope:

 BEGIN
 END;
 Subroutine “C”()
 BEGIN
 END;

BEGIN

END;

Identifier Declaration Location Identifier Scope

Main Main,A,B,C

Subroutine "A" A,B

Subroutine "B" B

Subroutine "C" C

PROCEDURE WoodPrice;

CONST

kTax:=0.05;

VAR

boardFeet,price,totalCost:REAL;

PROCEDURE CalcCost(feet,ppf:REAL; VAR cost:REAL);

VAR

baseCost:REAL;

FUNCTION AddTax(rawcost:REAL):REAL;

BEGIN

AddTax:= rawcost+(rawcost*kTax);

END;

{ begin CalcCost code }
8-10 VectorScript Language Guide

Program Blocks and Block Scope
8

In the example there are three program blocks, or areas of scope. The largest
block is the main script, WoodPrice; contained within it is the subroutine
block CalcCost, and within CalcCost is the subroutine function and
program block AddTax.
Any variable or constant identifiers defined in the WoodPrice block can be
referred to in the WoodPrice script code, and can also be referenced from
within any of the subroutines declared within the block. These items are said
to have global scope because they are defined at the top level of the script,
and can be accessed from any subroutine within the script.
Identifiers defined in the CalcCost subroutine (including those in the
declaration statement) can be referred to in the CalcCost subroutine, or
within the AddTax function. They are undefined, however, in the
WoodPrice block, which lies outside the CalcCost scope. This means that
items such as baseCost or the subroutine AddTax cannot be referenced
directly from the main body of the WoodPrice script.
The identifiers defined in the AddTax subroutine have the smallest scope of
any of the blocks in the script; they are available only to code contained
within that subroutine. They are undefined for and cannot be referenced from
the CalcCost and WoodPrice program blocks. In the example, the kTax
constant can be referenced directly in the AddTax function because kTax is
defined in the main script and has global scope. The result of AddTax,
however, cannot be accessed directly from the main script, since it is declared
within the CalcCost subroutine and is only valid within that subroutine.

BEGIN

baseCost:= feet*ppf;

cost:= AddTax(baseCost);

END;

{ end CalcCost code }

{ begin main script }

BEGIN

boardFeet:= RealDialog('Enter no. of feet','0');

price:= RealDialog('Enter price per foot','0');

CalcCost(boardFeet,price,totalCost);

Message('Total cost is $',totalCost:6:2);

END;

{ end main script }

Run(WoodPrice);
VectorScript Language Guide 8-11

User Defined Functions
8-12 VectorScript Language Guide

99

9User Interface
In this Chapter:

• Predefined Alerts

• Custom Dialogs

• Custom Dialog
Concepts

• Custom Dialog
Controls

• Creating a
Custom Dialog
VectorWorks provides several ways for a script to present a
user interface to display or gather information from the
user. These include Help Tags, Tool Tips, Messages,
Predefined Alerts, and Custom Dialogs. This chapter
briefly introduces these features, and then describes
Custom Dialogs in detail.
The simplest user interface feature that VectorScript
plug-ins should support is Help Tags or Tool Tips. This
feature simply identifies the plug-in by name (and an
additional short description) when the user hovers the
cursor over a tool icon or a menu item. Plug-ins are
discussed in detail in “Using VectorScript Plug-ins” on
page 10-1.
The “VectorScript Message” palette is another simple user
interface feature. A script can call the “Message()”
function to display one line of information to the user. The
function takes multiple arguments, and will concatenate the
pieces together. This feature can be used for status or
progress information. Since it is a palette, not an alert, it
does not interrupt the user’s workflow.

Predefined Alerts

To notify the user of an error condition, provide a warning,
or ask for confirmation, a script can use one of the several
predefined alerts. With one function call the script can
easily present a modal alert dialog which requires the user’s
attention before he or she can continue. For example:

AlrtDialog('You must select an object first.');

Another predefined alert will display a string which is
typically a question, and provide “Yes” and “No” buttons:

response := YNDialog('Do you wish to continue?')
VectorScript Language Guide 9-1

User Interface
There are several functions that allow the user to enter values. For example,
the function StrDialog allows the user to enter a string and the function
PtDialog allows the user to enter a point value. See the VectorScript
Function Reference for a complete list of these predefined alert functions.

Custom Dialogs

VectorScript provides the custom dialog API for scripts whose interface needs
may exceed what is provided by the predefined dialogs available in the
language. Scripts may create dialogs using any combination of controls (up to
512 controls per dialog) in layouts that can be tailored to meet your specific
interface needs. VectorScript allows up to 32 dialogs per script, which create
sophisticated interfaces for menu commands and tools. All the components
required to build and manage dialogs for handling complex data entry and
user interaction are provided.

Topics discussed in this chapter include the dialog control components, dialog
definition and layout, as well as handling user interaction. The chapter also
addresses the use of external resource files for storing image and string data
and how to use them in creating custom dialogs.
Note: This manual mainly discusses the custom dialog system that was

introduced with VectorWorks 8.x. It is sometimes referred to as the
“Modern Dialog” system or the “Layout Manager” dialog system.
For a limited time, VectorWorks will continue to support existing
scripts which may use the previous dialog system. These functions are
referred to as “Classic Dialogs” in the VectorScript Function
Reference.

Custom Dialog Concepts

Dialog box interfaces are a means of retrieving information from the user for
use by the script during execution. In order to do this, dialogs need to be able
accept data entry (in various formats) and provide meaningful interaction and
feedback for the user. Using VectorWorks, you have probably encountered
dialogs whose interface is tailored to a specific task (such as creating a layer
or setting document scale) and which provide feedback based on the data you
have entered. These dialogs use the same underlying concepts that you will be
using in creating custom dialogs for your scripts.
9-2 VectorScript Language Guide

Custom Dialog Controls
9

Controls

Every custom dialog is comprised of dialog controls, items which accept
user input of one kind or another. Dialog controls are designed using easily
understood metaphors which allow the user to quickly comprehend how a
dialog control operates. Once the user understands these simple concepts, it
becomes easy for the user to quickly enter data and define complex
combinations of settings for a given task. Controls are also designed to
provide interactive feedback for the user which guides and informs them as
they interact with the dialog.
Controls are organized within the dialog window by means of a dialog
layout, which positions and orients the controls for display. The dialog layout
provides a logical structure for the controls, allowing the user to quickly
process information contained in the dialog as well as facilitating data entry
into the dialog.

VectorScript provides a rich set of predefined dialog controls for use in
custom dialogs. Along with definition functions for each control, VectorScript
provides functions for defining and managing the dialog layout, as well as
functions for managing control-related data and for creating associated help
for each control.

Events

From the script side, the interaction between the user and the dialog is viewed
as a series of events. Each action the user initiates (such as a keystroke or a
mouse click) is viewed as a discrete event which is passed to and processed by
the script. The actions taken by the script in response to an event vary from
script to script, and are defined according to what the script is designed to
accomplish. This flexibility in handling of events is what makes it possible to
apply a relatively small set of dialog features to a wide range of script
applications.
Processing of user events in VectorScript is accomplished through the use of a
structured subroutine known as the event handler function. The event
handler function contains all the code needed to manage the operation of the
dialog while it is displayed.

Custom Dialog Controls

VectorScript provides a wide range of control types for use in creating custom
dialogs. In addition to basic control types such as editable text fields and radio
VectorScript Language Guide 9-3

User Interface
buttons, VectorScript also provides specialized controls such as sliders, color
palettes, and edit fields which support numeric data entry. The following
section lists the custom dialog controls currently available in VectorScript.

Static Text

Static text controls display a non-modifiable text string in the dialog. They are
used as labels for other controls, or to display informational text.

Static text strings are left-justified by default; limited right-justification can be
obtained by using alignment functions provided by the API. Static text
controls support updating of the control text during script run-time.

Edit Text

Edit text controls display a single-line editable field in which the user can
enter or modify text.

The text value contained in the control can be retrieved using functions
provided by the API. Text contained within an the control can also be updated
during run-time. Text in edit text controls is always left-justified.

Edit Text Box

This is a multi-line editable field with a vertical scroll bar.

Edit Integer

Edit integer controls are a specialized type of edit control designed for
handling numeric input. Edit integer controls return values directly as an
INTEGER value, eliminating the need for string-number conversions.

Static text control

Edit text field (inactive
state shown)
9-4 VectorScript Language Guide

Custom Dialog Controls
9

Edit integer controls also support in-line expressions which result in a
numeric value.

Edit Real

Edit real controls are a specialized type of edit control designed for handling
numeric input. Values from edit real controls are returned directly as a REAL
value, eliminating the need for string-to-number conversions.

Edit real controls can be configured to display the field value in one of several
formats, such as dimensions or angular values. Edit real controls also support
in-line expressions which result in a numeric value.

Push Button

Push button controls display a standard dialog button. The control is
automatically sized based on the specified text string.

Push button control text cannot be updated during script run-time.

Radio Button

Radio button controls display a standard radio button option control.
Radio buttons are traditionally used in pairs or groups of three to display a set
of related options where only one of the settings is active at any time. Related
radio button controls are referred to as a radio button group.

Edit integer field

Edit real controls
(dimension formatting)

Push button control
VectorScript Language Guide 9-5

User Interface
Check Box

Check box controls display a standard check box option control.

Check boxes are traditionally used to display options that can be set
independently of other option items in a dialog.

Pulldown Menu

Pulldown menu controls display one or more selection options in a menu
format. The user may select one item from the available options as the active
control option.

When in its closed state, the active menu option is displayed in the control.
When the control is selected, all menu options are displayed, with the active
option highlighted:

Pulldown menu options can also be navigated by highlighting or tabbing into
the control and using the arrow keys to move up and down the list of options.
VectorScript provides API functions for retrieving and managing pulldown
menu control options.

Radio button group

Check box control

Pulldown menu control
(closed state)

Pulldown menu control
(open state)
9-6 VectorScript Language Guide

Custom Dialog Controls
9

List Box

List box controls display a menu containing one or more selection options in a
list box format. The user may select an option from the available list items as
the active control option.

The user-selected option is highlighted in the list box view. List box options
can be navigated by highlighting or tabbing into the control and using the
arrow keys to move up and down the list of items available in the control.
VectorScript API functions for retrieving and managing pulldown menu
control options also work with list box controls.
As of VectorWorks 10, list boxes can have multiple columns, each with its
own column width. By default, list boxes are created with one column. To add
a column, use the VectorScript function AddListBoxTabStop, which takes a
tab stop as a parameter. Each tab stop is given as a character position. Hence,
each succeeding tab stop must be at a greater character position than the
previous one.
Once all tab stops have been set up, data can then be added to the list box (all
tab stops must be set before data can be added). Data is added in the usual
way, using calls to InsertChoice. To align text at a tab stop, tab characters
are inserted in the string passed to InsertChoice. The string for an entire
line must be passed to InsertChoice all at once; it is not possible to pass
just a part of a line.

Group Box

Group boxes are used to associate related items in a dialog box. Other
controls, such as radio buttons, pulldown menus, and even other group boxes,
can be embedded within a group box control.

List box control
VectorScript Language Guide 9-7

User Interface
The size of the control is determined by the size of the controls which are
embedded in the group box. The title of a group box is optional; group boxes
defined without titles will display with a complete box border. Group boxes
do not return a data value.
Group boxes can also be configured as invisible to group items as a layout
unit within the dialog box.
Group boxes and the controls contained within them can be treated as a single
control when performing dialog layout. Adjustments to the group box control
will automatically adjust any controls contained within the group box.

Slider

Slider controls allow the user to select from a range of allowable values by
positioning the control’s slider bar indicator.

Slider controls are displayed with a fixed width, and are only displayed in a
horizontal orientation.
Slider controls display range increments as tick marks located under the slider
bar. The range increment is a fraction of the maximum value specified for the
slider; the number of marks displayed can vary from 1 to 10, depending on the
specified value.

Group box control

Group box title

Slider control
9-8 VectorScript Language Guide

Custom Dialog Controls
9

Image Pane

Image pane controls display an image retrieved from a VectorScript resource
file:

Image pane controls are sized to the dimensions of the graphic image being
displayed. The graphic displayed in the image pane control can be updated
during script run-time by setting the active image resource for the control.

Color Palette

Color palette controls display a system color palette when clicked. The
selected color value is returned for use in the script.

The value returned by the color palette control is a decimal representation of a
hexadecimal color value. This value must be converted to corresponding RGB
values for use with VectorScript color functions.

Image pane control

Color palette control

System color (Windows)System color (Macintosh)
VectorScript Language Guide 9-9

User Interface
Image Popup

Image popup controls allow the user to display a selectable preview list of
resources.

Gradient Slider

The gradient slider can be used to indirectly manipulate gradient resources.

Creating a Custom Dialog

To create custom dialogs, VectorScript utilizes a "layout manager" which
handles all the details of positioning and sizing of controls. If you have
written custom dialogs using previous versions of VectorWorks or MiniCAD,
you know that the dialog was treated as a canvas, where dialog controls were
created and positioned using absolute coordinates. This was often a tedious
process, and dialogs created on one platform often did not transfer to other
platforms without significant adjustment. Modern custom dialogs in
VectorScript treat the dialog as a container for the components of the dialog.
Using this methodology allows the details of control sizing and positioning to
be handled by the application and results in dialogs which are consistent
across platforms and easier to create.
Modern custom dialogs create dialogs in two stages. In the first stage, controls
are added to the dialog container; this usually involves a series of control
definition function calls which specify the controls to be displayed along with
9-10 VectorScript Language Guide

Creating a Custom Dialog
9

their default properties. Once all the controls for a dialog have been added to
the dialog container, they are organized for final on screen display.
Organizing controls in modern custom dialogs is radically different from the
old canvas method in older versions. Controls are arranged by specifying their
position relative to other controls, rather than specifying their exact location.
While you may specify character widths and heights for certain controls, for
the most part the details of positioning each control are handled for you by the
application.

Defining the Dialog Controls

The first step in creating a new VectorScript custom dialog is to define the
dialog window and its basic properties. To do this, we will use the custom
dialog API function CreateLayout(), which creates the dialog window and
defines the title, default button, and help display properties of the dialog.
CreateLayout() then returns an identifier which will be used to add
controls to the dialog. This identifier is also used elsewhere in the script to
refer to the dialog for control positioning and event handling.
Example:

id := CreateLayout('Revise Layer Link',TRUE,'Update','Cancel');

The function creates a new empty dialog, entitled Revise Layer Link, which
contains a help text area and two default buttons (Update and Cancel). The
following script creates the dialog:

procedure CreateDialog;

VAR

id: LONGINT;

result : LONGINT;

BEGIN

id := CreateLayout(’Revise Layer Link’, TRUE, ’Update’, ’Cancel’);

result := RunLayoutDialog(id,NULL);

END;

RUN(CreateDialog);
VectorScript Language Guide 9-11

User Interface
This is the basic dialog container in which the rest of the dialog definition will
be created.
CreateLayout() allows you some flexibility in creating the dialog
container. If, for instance, you do not wish to provide help text in a dialog (in
a confirmation dialog, for example) you can suppress the help text area by
specifying FALSE in the help text display parameter of CreateLayout():

id := CreateLayout('Revise Layer Link',FALSE,'Update', 'Cancel');

Dialog buttons can also be suppressed if not needed. Using the example, if the
dialog did not require a Cancel button, you could suppress it simply by
specifying a blank string for the button parameter:

id := CreateLayout('Revise Layer Link',FALSE,'Update','');

The default button for the dialog can also be suppressed in this fashion:

id := CreateLayout('Revise Layer Link',FALSE,'','Cancel');

Note: It is possible to suppress both default buttons for a dialog. In this
instance, if your code does not provide some alternate means of
dismissing the dialog, you will be unable to exit the dialog.

Once you have defined the dialog and its basic properties, you can begin
adding the controls to the dialog. A control is added to a custom dialog by
calling the appropriate definition function for the control, referencing the
dialog in which the control will be displayed using the identifier supplied by
CreateLayout(). In our example, we will be adding a pulldown menu to
display layers that can be selected for the link, controls to let us specify link
properties, as well as some additional controls for descriptive text and to
organize the dialog. The resulting code is shown below:

Each control that will be a part of the dialog is defined with a call to a
definition function. The definition for each control specifies the dialog in
which it should appear, a unique number identifying the control, and the
default properties for the control. The pulldown menu, for example, is created

id := CreateLayout('Revise Layer Link',TRUE,'Update', 'Cancel');

CreateStaticText(id,4,'Relink to:',-1);

CreatePulldownMenu(id,5,32);

CreateGroupBox(id,6,'Link Options',TRUE);

CreateCheckBox(id,7,'Link object is locked');

CreateCheckBox(id,8,'Name Link:');

CreateEditText(id,9,'Untitled Link',26);
9-12 VectorScript Language Guide

Creating a Custom Dialog
9

using the function CreatePulldownMenu(), specifying the control ID of 5
and a width of 32 characters.

Once the controls have been defined, you can optionally add help text for
some or all controls. Help text provides the user with an easy means of
identifying what a control does from within the dialog, and is usually
recommended for all but the most basic dialogs.
The function SetHelpString() is used to add help for a specific control.
The function associates a help string with a control; if the cursor is moved
over the control when the dialog is displayed, the associated help string will
automatically be displayed in the help text area of the dialog. The dialog
control definition code for the example with help strings added is shown
below:

id := CreateLayout('Revise Layer Link',TRUE,'Update', 'Cancel');

CreateStaticText(id,4,'Relink to:',-1);

CreatePulldownMenu(id,5,32);

CreateGroupBox(id,6,'Link Options',TRUE);

CreateCheckBox(id,7,'Link object is locked');

CreateCheckBox(id,8,'Name Link:');

CreateEditText(id,9,'Untitled Link',26);

SetHelpString(1,'Update the selected layer link.');

SetHelpString(2,'Cancel the operation and exit.');

SetHelpString(4,'New layer to be displayed by selected link.');

SetHelpString(5,'New layer to be displayed by selected link.');

SetHelpString(7,'Lock the link object after it has been updated.');

SetHelpString(8,'Apply an object name to the layer link.');

SetHelpString(9,'Apply an object name to the layer link.');
VectorScript Language Guide 9-13

User Interface
In the example, note that we have repeated certain help text strings. We did
this in order to provide useful help for the item whether the cursor was over
the actual control or over the label associated with the control. Also, help text
was omitted for the group box control; group boxes do not have associated
help text.

Defining the Dialog Layout

Positioning dialog controls is generally a two step process, where an initial
arrangement specifies the relative position of each control and then any
special alignments are specified.
Dialog items are arranged by setting an initial anchor control and then
specifying a chain of controls relative to the first control. Layouts and group
items are the only two objects that can have anchor controls. Anchor controls
are set using either SetFirstLayoutItem or SetFirstGroupItem. The
next item is placed relative to the anchor item using either SetBelowItem
SetRightItem. Using these calls, a chain of controls can be created with
each item relative to the other. Group items are just like other items in that any
control including another group can be placed to the right of or below another
group.
The initial arrangement generally places items so that their left and top edges
are aligned. To specify other alignments use the AlignItemEdge call. In
AlignItemEdge you specify an edge and an alignment group. All objects in
the same alignment group are aligned together. AlignItemEdge also allows
you to specify whether you want an object to shift or resize when performing
the alignment.

Running the Dialog

After creating the controls and arranging the layout, the script is ready to run
the dialog. The RunLayoutDialog() function will show the dialog on
screen and begin handling the user interaction with the dialog. The dialog will
look appropriate for the computer platform it is running on—Macintosh or
Windows.

Handling Dialog Events

The script can respond to user events by defining its own event handling
function and passing the name of that function to the RunLayoutDialog
call. When the user presses a button or clicks in a list, for example,
VectorWorks will call the event handling function. The function will receive
9-14 VectorScript Language Guide

Creating a Custom Dialog
9

the control item number and any appropriate data. The procedure will be
called with an item of SetupDialogC before the dialog is displayed so that
the script can initialize its controls.

Procedure HandleEvents(VAR item : LONGINT; data : LONGINT);

Begin

case item of

SetupDialogC:

Begin

InsertChoice(kPullDown, 0, 'choice 0');

InsertChoice(kPullDown, 1, 'choice 1');

End;

kCancelButton:

Begin

End;

kOKButton:

Begin

End;

End;

End;
VectorScript Language Guide 9-15

User Interface
9-16 VectorScript Language Guide

1010

10Using VectorScript Plug-ins
In this Chapter:

• Creating and
Using Plug-ins

• Understanding
Plug-In
Parameters
VectorWorks 8 introduced the concept of VectorScript
plug-ins, which allow scripts to be directly integrated into a
VectorWorks workspace and be made available to any
VectorWorks document. The three types of plug-ins—
menu commands (.vsm), tools (.vst), and objects
(.vso) — allow scripts to integrate into both workspace
menus and tool palettes, as well as other VectorWorks
features such as the Resource Browser.
In addition to better integration into the VectorWorks
environment, plug-ins also provide new script functionality
in the form of plug-in objects. Plug-in objects created
with VectorScript can be used to create entirely new classes
of items that can streamline and enhance the design/
drafting process for documents. They support standard
VectorWorks core technologies such as snapping, classing,
and advanced object editing, giving them essentially the
same status as VectorWorks built-in object types.
VectorScript plug-ins also provide enhanced portability and
platform independence for scripts, allowing them to be
easily moved to VectorWorks installations on either
Macintosh or Windows systems.
VectorScript plug-ins can also be localized for use in other
countries. The names and strings that are displayed can be
translated to another language. Drawings containing
plug-in objects can be exchanged between users in different
countries.
This chapter explains the basic concepts related to creating
and using VectorScript plug-ins with VectorWorks.

Creating and Using Plug-ins

VectorScript plug-ins are created using the VectorScript
Plug-in Editor, which can be opened by selecting
VectorScript Language Guide 10-1

Using VectorScript Plug-ins
Organize > Scripts > Create Plug-in. The plug-in editor provides access
to all the settings needed to define any type of VectorScript plug-in, and can
also be used to edit existing plug-ins as well. The editor interface provides a
listing of all plug-ins currently available to VectorWorks, as well as tools for
managing individual plug-in items. Access to the various settings of a plug-in
is available by clicking on one of the buttons in the main editor dialog; doing
so will display detailed information on the selected setting, which can then be
modified as desired.

For additional details on creating or editing specific plug-in types, see
Chapters 11 through 16.
Once a new plug-in has been created using the Plug-in Editor, it can be made
available for use in VectorWorks by using the Workspace Editor to add the
plug-in item to one or more workspaces. Once the item has been added to a
workspace, it is available to any open document in VectorWorks.

Using the Different Types of Plug-ins

A key feature of VectorScript plug-ins is their smooth integration into the
VectorWorks product interface. VectorScript plug-in menu commands and
tools work just like any built-in VectorWorks tool or menu item. Like built-in
menu commands, VectorScript menu commands can be set to require certain
document conditions such as 2D/3D view orientation or a selected set of items
in order to activate. VectorScript tools, like their built-in counterparts, make
use of the SmartCursor and other tool-centric VectorWorks features in order to
provide full functionality for these items.
Plug-in objects have characteristics of both VectorWorks tools and
VectorWorks symbols. Plug-in objects can be added to a VectorWorks tool

Plug-in managementList of available plug-ins

Access to specific
plug-in settings

For information on using
the Workspace Editor to
add VectorScript plug-ins to
a workspace, see Appendix
B in the VectorWorks
User’s Guide.
10-2 VectorScript Language Guide

Creating and Using Plug-ins
10
palette and resemble tool items, but in use they will place instances of the
object in the document much like the symbol tool will place symbols in a
document.

Object instances in a document can be modified by using the Object Info
palette to edit the parametric values that are used to define the object. These
values, which can be edited individually or globally, give plug-in objects
enormous flexibility as to how they can be displayed within a document.
Plug-in objects can also be used in conjunction with the Resource Browser to
create preconfigured object instances that need minimal editing after
placement. Libraries of different object configurations based on a single
plug-in object can be easily created and retrieved through the Resource
Browser.

How Plug-ins Work

VectorScript plug-ins combine regular VectorScript script code with a plug-in
"wrapper," an encoded header which contains the information that defines the
characteristics and behaviors of the plug-in. Information such as the category
of the plug-in, properties which define how the plug-in is activated by
VectorWorks, or any other information needed by the plug-in to function
within the VectorWorks application framework is included within the header
which "wraps" the script.
When VectorWorks is launched, it searches the Plug-ins folder for any
VectorScript plug-in that is included in the active workspace and registers the
information necessary to activate and manage the plug-in.
Note: A plug-in must reside in the Plug-ins folder when the application is

launched or the workspace is activated for it to be available in the
current VectorWorks session.

When a menu command or tool item is selected, the script and any
information needed by the plug-in is loaded into memory, and the plug-in
script executes. VectorWorks uses information provided by the plug-in to

Objects behave like symbols
VectorScript Language Guide 10-3

Using VectorScript Plug-ins
provide the user interactions (such as constraints) and document environment
for the menu command or tool can perform its defined actions.
VectorScript objects work similarly to VectorScript menu commands or tools,
but their scripts can also be invoked through events that occur in the
document. Placed object instances can be edited or modified using either the
SmartCursor or Object Info palette, and these changes will cause the script
defining the object to execute in order for the object to redraw. Global
document changes which force a regeneration of the document can also cause
the scripts of objects placed in the document to execute.

Understanding Plug-In Parameters

At the core of VectorScript plug-ins is the concept of plug-in parameters,
values which are used to define plug-in objects and which can be used to store
persistent values associated with all types of plug-ins. Plug-in parameters are
the "glue" which holds VectorScript plug-ins together.

How Parameters Work

Plug-in parameters are stored in a parameter record, which is a specialized
type of VectorWorks record format. Parameter records are required by
VectorScript objects, but they can be created and associated with any type of
VectorScript plug-in.
Values are stored in the parameter record by means of parameter fields.
These fields act like regular record fields and can be accessed for reading and
writing by the plug-in script. Parameter fields have distinct data types for
storing different kinds of information; information on specific parameter
types may be found later in this section.
The values stored in the parameter record of a VectorScript plug-in can be
used in one of several ways. Objects use the stored parameter values to
provide the data necessary to define and create the appearance of the object
instance in the document. Menu commands and tools use parameter records to
store information for subsequent use with the plug-in item.
Parameter records can be associated with the plug-in item itself, or, in the case
of objects, can be associated with each instance of an object placed in a
VectorWorks document. Parameter records associated with plug-in items are
not visible in the Object Info palette or in the Resource Browser, and cannot
be edited from either location. Tool items and objects do provide access to the
parameter record of the plug-in by clicking the Plug-in Preferences button
displayed in the mode bar when the tool or object is active.
10-4 VectorScript Language Guide

Understanding Plug-In Parameters
10
Parameter records associated with object instances placed in a document can
be edited by selecting the object instance and editing the parameter field
values through the Shape pane of the Object Info palette.

Parameter Types

VectorScript provides ten parameter field types for use with plug-ins:
• Integer
• Boolean
• Number
• Text
• Popup
• Radio Button
• Dimension

Provides access to plug-in parameter record

Object Info palette provides access to object parameters
VectorScript Language Guide 10-5

Using VectorScript Plug-ins
• X-Coordinate
• Y-Coordinate
• Control Point

Parameter records can have multiple parameter fields of the same type, or
combinations of parameter fields of different types. The following sections
document each parameter type in detail.

Integer

Integer parameters store a single INTEGER data value.
An integer parameter value is displayed in the Object Info palette in an
editable field, and can be edited as desired. Integer parameter fields support
calculations in the field, fractional values entered into an integer parameter
field will be rounded to the nearest value.
Integer parameters do not support unit marks or unit conversion.

Boolean

Boolean parameters store a single BOOLEAN data value.
A boolean parameter is displayed in the Object Info palette as a check box,
with the state of the check box indicating the TRUE-FALSE state of the value
(TRUE = checked, FALSE = unchecked).
Boolean parameters do not support unit marks or unit conversion.
10-6 VectorScript Language Guide

Understanding Plug-In Parameters
10
Number

Number parameters store a single REAL data value.
A number parameter value is displayed in the Object Info palette in an
editable field, and can be edited as desired. Number parameter fields support
calculations in the field, and fractional values entered into a number
parameter field will be displayed using the current units fractional display
setting.
Number parameters do support unit marks or unit conversion.

Text

Text parameters store a single string data value. The stored value may be up to
32K in length.
A text parameter value is displayed in the Object Info palette in an editable
field, and can be edited as desired. For text values which are greater than 255
VectorScript Language Guide 10-7

Using VectorScript Plug-ins
characters in length, use a DYNARRAY OF CHAR to store the value during
script execution.

Popup

Popup parameters store a single STRING data value that is selected from a
predefined list of values. The list of available values is defined in the
parameter definition dialog, and cannot be modified during script execution.
Popup parameter values are displayed in the Object Info palette as popup
menu listing the defined value options. The active parameter value (the value
which is stored in the parameter) is indicated by the value displayed in the
popup when the control is not selected, and by a bullet next to the item when
the control is selected. To modify the value, select the desired parameter value
from the popup control.
10-8 VectorScript Language Guide

Understanding Plug-In Parameters
10
Radio Button

Radio button parameters store a single STRING data value that is selected
from a predefined list of values. The list of available values is defined in the
parameter definition dialog, and cannot be modified during script execution.
Radio button parameter values are displayed in the Object Info palette as
series of radio buttons in a group box, with one radio button for each defined
value. The active parameter value (which is stored in the parameter) is
indicated by the selected radio button. To modify the value, select the radio
button corresponding to the desired value.

Dimension

Dimension parameters store a dimension data value as a REAL numeric value.
A dimension parameter value is displayed in the Object Info palette in an
editable field, and the value can be edited as desired. Dimension parameter
fields support calculations in the field, and fractional values entered into a
dimension parameter field will be displayed using the current unit’s fractional
display setting.
Dimension parameters support the use of unit marks with values; values
stored in one unit format will be automatically converted to an equivalent
value if the document unit setting is modified.
Dimension parameters are not sensitive to changes in the user origin of a
document.

X-Coordinate

X-coordinate parameters store a coordinate data value as a REAL numeric
value.
VectorScript Language Guide 10-9

Using VectorScript Plug-ins
A coordinate parameter value is displayed in the Object Info palette in an
editable field; the value can be edited as desired. Coordinate parameter fields
support calculations in the field, and fractional values entered into a
coordinate parameter field will be displayed using the current units fractional
display setting.
Coordinate parameters support the use of unit marks with values; values
stored in one unit format will be automatically converted to an equivalent
value if the document unit setting is modified.
Coordinate parameters are sensitive to changes in the user origin of a
document, and are designed to be used with geometric data that is related
directly to locations within a VectorWorks document. Values displayed in
coordinate fields will be corrected for any changes in the document user
origin.

Y-Coordinate

Y-coordinate parameters store a coordinate data value as a REAL numeric
value.
A coordinate parameter value is displayed in the Object Info palette in an
editable field; the value can be edited as desired. Coordinate parameter fields
support calculations in the field, and fractional values entered into a
coordinate parameter field will be displayed using the current unit’s fractional
display setting.
Coordinate parameters support the use of unit marks with values; values
stored in one unit format will be automatically converted to an equivalent
value if the document unit setting is modified.
Coordinate parameters are sensitive to changes in the user origin of a
document, and are designed to be used with geometric data that is related
directly to locations within a VectorWorks document. Values displayed in
coordinate fields will be corrected for any changes in the document user
origin.

Control Points

Control point parameters are a specialized parameter type designed to create
control points in plug-in objects. A control point is similar to a selection
handle and allows the user to click and drag to reshape the object. When
created, a control point parameter consists of two linked coordinate
parameters. The two parameters correspond to x- and y-coordinate fields for
the control point.
10-10 VectorScript Language Guide

Understanding Plug-In Parameters
10
Control point parameters are displayed in the Object Info palette as a pair of
editable coordinate fields; the values can be edited as desired. Control points,
like coordinate fields, support calculations in the fields. Fractional values
entered into a control point parameter field will be displayed using the current
units fractional display setting.
Control point parameters support the use of unit marks with values; values
stored in one unit format will be automatically converted to an equivalent
value if the document unit setting is modified.
Control point parameters are sensitive to changes in the user origin of a
document, and values displayed in the field will be corrected for any changes
in the document user origin.
Control point fields can be renamed by entering a display name in the
alternate name field of the parameter. This value will be used as the control
label in the Object Info palette; when referring to the parameter in a script, use
the actual definition name of the parameter.

Accessing Parameters from Scripts

VectorScript provides a well-defined mechanism for directly accessing values
in parameter records within plug-in scripts. This mechanism, known as
parameter referencing, allows parameter values to be easily retrieved for use
with scripts.
The generalized syntax for parameter references is as follows:

P<name of parameter>
VectorScript Language Guide 10-11

Using VectorScript Plug-ins
Parameter names should be specified in all uppercase letters, with underscores
representing any embedded spaces in the parameter name. For example, a
dimension parameter named Space Width would be referenced in a script
as:

PSPACE_WIDTH

Parameter references can be used to assign values to other identifiers in a
script. Supported identifiers include variable, array, array element, and
structure member identifiers. For example, assigning the value in the
parameter to a variable would be defined as:

sp_width:= PSPACE_WIDTH;

Parameter references can also be used like constants in expressions or
function arguments. For example, valid uses of Space Width parameter
would include:

totalWidth:= 5 * PSPACE_WIDTH;

CalculateTotal(PSPACE_WIDTH,2);

Parameter references should always be treated as constant values. Parameter
references do not accept value assignments, and parameter reference values
cannot be modified.

Setting Parameter Values from Scripts

VectorScript uses the SetRField() function to write values to parameter
records. VectorScript also provides two functions,
GetCustomObjectInfo() and GetPluginInfo() which return the
information needed by SetRField() to write values to parameter records.
Using GetCustomObjectInfo() or GetPluginInfo() with
SetRField() is relatively straightforward. When writing a value back to the
parameter record of an object instance, first use GetCustomObjectInfo()
to obtain information about the object. Once this information has been
retrieved, it can be used in conjunction with SetRField() to write the value
back to the parameter record. The following example illustrates this
technique:

BEGIN

resultStatus:= GetCustomObjectInfo(objName,objHd,recHd,wallHd);

IF resultStatus THEN BEGIN

sp_width:= PSPACE_WIDTH;
10-12 VectorScript Language Guide

Understanding Plug-In Parameters
10
In the example, GetCustomObjectInfo() is called to obtain the name of
the object and a handle to both the object instance and its associated
parameter record. This information is then used with SetRField() to write
the value to the parameter record field.
Note that when writing values to the parameter record, the actual name of the
field, not the parameter reference, is used. Parameter references should only
be used for retrieving data from the parameter record.
The example also points out one additional requirement for using
SetRField(). In the example, the value in sp_width is a REAL, but
SetRField() requires a STRING argument for the value being assigned to
the record field. In this case, it will be necessary to convert the dimension
value to a STRING for compatibility with the function call. The parameter
record will convert the value back to the appropriate data type when it is
stored.
The method for writing values to the parameter records of menu commands
and tool items is almost identical to the method used for objects. In the case of
menu commands and tool items, the function GetPluginInfo() should be
used to obtain the plug-in name and a handle to the parameter record. The
example below illustrates how the function is used with a menu command:

...

...

sp_width:= 5 * sp_width;

...

...

SetRField(objHd,GetName(recHd),’Space Width’, Num2StrF(sp_width));

END;

END;

BEGIN

...

...

IF GetPluginInfo(cmdName,pRecHd) THEN

offvalue:= GetField(5);

numlines:= GetField(6);

cmdHd:= GetObject(cmdName);

SetRField(cmdHd,GetName(pRecHd),'Offset',Num2StrF(offvalue));

SetRField(cmdHd,GetName(pRecHd),'Lines',Num2Str(0,numLines));
VectorScript Language Guide 10-13

Using VectorScript Plug-ins
In the example, GetPluginInfo() is used to obtain the name of the menu
command and a handle to the parameter record. This information is used with
SetRField() to write values to the parameter record of the menu command.
Parameter records for menu commands and tool items are very useful for
storing information between uses of the command or tool item. For example,
if a user modifies the default settings of a tool item, this information can be
stored and reused on subsequent uses of the tool.
Note: Like objects, records for menu commands and tool items are stored

with a VectorWorks document; switching documents may cause the
default settings for a command or tool item to change.

Setting Parameter Visibilty

By default, all plug-in parameter users interface controls are enabled and
visible. This behavior may be overridden using
SetParameterVisibility() and EnableParameter(). Using
GetCustomObjectInfo() or GetPluginInfo() with these procedures is
relatively straightforward. First, use GetCustomObjectInfo() to obtain
information about the object. Once this information has been retrieved, the
plug-in parameter’s user interface attributes can be specified. In each case, the
parameter argument is the universal name of the plug-in’s parameter. For
example:

END;

...

...

END;

BEGIN

...

resultsStatus := GetCustomObjectInfo(objName,objHd,recHd,wallHD);

IF resultStatus THEN BEGIN

EnableParamter(objHD, ‘Space Width’. FALSE);

{Disables the control for the Space Width parameter}

SetParameterVisibility(objHd, ‘Space Depth’. FALSE);

{Hides the control from the Space Width parameter}

...
10-14 VectorScript Language Guide

Understanding Plug-In Parameters
10
Like the plug-in object example above, plug-in menus and tools that use
parameters can use SetParameterVisibilty() and
EnableParameter().

Setting Default Parameter Visibility

Additionally, default parameter visibility may be set for objects, menus, and
tools in the Create Plug-in/Edit Parameter dialog. By placing two leading
underline characters as a prefix to the parameter’s universal name, the
parameter visibility is set to false. Using this technique hides a parameter in
the default settings dialog for a plug-in. Parameters with this special universal
name prefix will not be shown unless explicitly made visible using
SetParameterVisibility.

END;

END;

BEGIN

...

...

IF GetPluginINfo(cmdName,pRecHd) THEN

cmdHd:= GetObject(cmdName);

EnableParameter(objHd, ‘Offset’. FALSE);

SetParameterVisibility(objHd, ‘Lines’. FALSE);

END;

...

...

END;
VectorScript Language Guide 10-15

Using VectorScript Plug-ins
10-16 VectorScript Language Guide

1111

11VectorScript Menu Commands
In this Chapter:

• Creating a Menu
Command Plug-in

• Setting Options
for Menu
Commands

• Parameters and
Menu Commands

• Working with
Menu Commands
VectorScript menu commands (.vsm) plug-ins allow
scripts to be inserted into a VectorWorks workspace as a
menu command item. VectorScript menu commands can be
used like any standard menu command item, performing
operations on the active VectorWorks document. As part of
a workspace, menu command plug-ins (unlike document
scripts) are available to any open VectorWorks document
without the need for importing the script into the active
document.
VectorScript menu commands support the standard
behaviors expected from standard VectorWorks menu
items. VectorScript menu commands can detect the view
state of the active VectorWorks document, or can determine
if a selection set exists which the menu command can act
on.
This section documents the basic techniques needed to
create and use VectorScript menu commands with
VectorWorks.

Creating a Menu Command Plug-in

VectorScript menu commands are created using the Plug-in
Editor to create and define the actual plug-in item. The
Plug-in Editor provides a single interface for creating the
plug-in script and editing the associated information that
will be used by the menu command when used during a
VectorWorks session.

Creating the Menu Command Plug-in

To create a menu command plug-in:
1. Select Organize > Scripts > Create Plug-in.
VectorScript Language Guide 11-1

VectorScript Menu Commands
2. In the VectorScript Plug-in Editor dialog box, click the New button.

3. In the Assign Name dialog box, enter the name of the new plug-in item
and select Command as the type of the plug-in. Click OK to create the
plug-in item.

Setting the Category of the Menu Command

To set the category:
1. Click the Category button from the VectorScript Plug-in Editor dialog

box.

2. In the Assign Category dialog box, enter the name of the category to be
associated with the new plug-in item. Click OK to set the plug-in
category to the new value.

The plug-in category is the heading under which the object may be found
when selecting items in the Workspace Editor.

Enter the name of the new plug-in

Select the type of plug-in

Enter the new category for the plug-in
11-2 VectorScript Language Guide

Setting Options for Menu Commands
11
Setting Options for Menu Commands

Menu command plug-ins have several settings options which allow them to
behave like standard VectorWorks menu commands. These settings, also
known as plug-in properties, control behavior of the menu command with
respect to the state of the document (selection status, view orientation) as well
as defining the help text that will be available for the command.

Setting Document Properties for the Command

To set document properties:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Command Properties dialog box, select the appropriate availability
options for the plug-in.

Availability options for menu commands can be set to one of three states:
• Require, which will require the document state condition to exist for the

command to be active,
• Prohibit, which will deactivate the command if the document state

condition exists,
• Ignore, which will ignore the document state condition.

If a menu command is designed to act only on a single selected object,
for example, availability options would be set to require object selection,
but prohibit multiple selection.

Availability options Option setting
VectorScript Language Guide 11-3

VectorScript Menu Commands
The menu command will be disabled when the document state does not
match the indicated option settings.

3. Click OK to save the new settings for the object.

Setting Help Text for the Menu Command

Help text describing the menu command item will display when the cursor is
held over the command.
Note: Help text for menu commands is currently only available on

Macintosh systems.

To create help text:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Command Properties dialog box opens.

2. Enter the desired help text in the Help field.

The text will be displayed when help is enabled and the cursor placed
over the menu command.

3. Click OK to save the new settings for the object.

Requires selected object

Prohibits multiple selection
11-4 VectorScript Language Guide

Parameters and Menu Commands
11
Parameters and Menu Commands

Menu commands can have parameter records associated with the plug-in
item. Such records can be used for persistent data storage between uses of the
command, as well as providing default menu command values. A menu
command which displays a dialog, for example, might need to store values
entered by a user for later use. These values can be stored in the parameter
record of the menu command and retrieved later when the command is again
selected.
A default parameter record is created in the document when on the first use of
the menu command with the active document. This default parameter record
stores the command’s default settings with the document. It is used by the
menu command when it is activated for use.
Switching documents will display stored values associated with the new
document or, if no parameter record exists, will display the default values of
the parameter record as created by the plug-in item.

Creating a Parameter Record for a Menu Command

To create a parameter record:
1. Click the Parameters button from the VectorScript Plug-in Editor

dialog box.

The Parameters dialog box opens.

2. Create the desired parameter record settings for the plug-in. For more
information on plug-in parameters, see “How Plug-ins Work” on page
10-3.

3. When all the parameters have been created, click OK.

Create parameters as needed for use with menu command
VectorScript Language Guide 11-5

VectorScript Menu Commands
Creating Script Code for a Menu Command

The script source code for the menu command can be created using the
VectorScript editor or a third-party text editor. The source code is saved as
part of the plug-in item.
To create script code:
1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

3. When the script has been entered, click OK to save the script as part of
the plug-in.

Working with Menu Commands

Adding a Menu Command to a Workspace

Once a menu command has been created, it will need to be added to one or
more workspaces to be available for use with VectorWorks. Once the
command is added to the workspace, it will immediately be available for use
in the current VectorWorks session.

Enter script source code for the plug-in
11-6 VectorScript Language Guide

Working with Menu Commands
11
To add a menu command to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

2. In the list of available menu commands in the Workspace Editor, look for
the category that was assigned to the menu command. Click the
disclosure triangle to display the available items in the category.

3. Click and drag the menu command to the desired location in the
workspace menu structure. If desired, add a key equivalent for the menu
command.

4. Click OK to save the workspace with the added menu command item.

For details on editing
workspaces, see
Appendix B in the
VectorWorks User’s
Guide.
VectorScript Language Guide 11-7

VectorScript Menu Commands
11-8 VectorScript Language Guide

1212

12VectorScript Tool Items
In this Chapter:

• Creating a Tool
Item Plug-in

• Setting Options
for the Tool

• Parameters and
VectorScript
Tools

• Creating the Tool
Script

• Working With
Tool Items
VectorScript tool item (.vst) plug-ins allow scripts to be
added to a VectorWorks workspace as a tool palette item.
VectorScript tools, like standard VectorWorks tools, have
support for the full range of VectorWorks feature
technology. VectorScript tools make use of the
SmartCursor, and can respond to document state conditions
such as selection status or view orientation. As part of a
workspace, VectorScript tools (unlike document scripts)
are available to any open VectorWorks document without
the need for importing the script into the active document.
This section documents the basic techniques needed to
create and use VectorScript tool items with VectorWorks.

Creating a Tool Item Plug-in

VectorScript tool items are created using the VectorWorks
Plug-in Editor to define and create the actual plug-in item.
The Plug-in Editor provides a single interface for creating
the plug-in script and defining the associated settings which
affect the tool item when used during a VectorWorks
session.

Creating the Tool Plug-in

To create a tool plug-in:
1. Select Organize > Scripts > Create Plug-in.

2. In the VectorScript Plug-in Editor dialog box, click
New.

3. In the Assign Name dialog box, enter the name of the
new plug-in item and select Tool as the type of the
plug-in. Click OK to create the plug-in item.
VectorScript Language Guide 12-1

VectorScript Tool Items
Setting the Tool Category

To set the tool category:
1. Click the Category button from the VectorScript Plug-in Editor dialog

box.

The Assign Category dialog box opens.

2. Enter the name of the category to be associated with the new tool item.
Click OK to set the plug-in category to the new value.

The plug-in category is the heading under which the tool is referenced when
selecting items in the Workspace Editor.

Enter the name of the new plug-in

Select the type of plug-in

Enter the new category for the plug-in
12-2 VectorScript Language Guide

Setting Options for the Tool
12
Setting Options for the Tool

Tool items have a number of settings which allow them to maintain behavior
consistent with standard VectorWorks tools. These settings, also known as
plug-in properties, control the conditions under which the tool is activated,
as well as various display options for the tool.

Setting Mode Bar Text for the Tool

To set the mode bar text:
1. Click the Properties button in the Plug-in Editor dialog box.

2. In the Tool Properties dialog box, enter the desired descriptive text to be
displayed in the mode bar in the Mode Bar String field.

Mode bar text usually includes the name of the tool, and can include text
indicating the action the user should perform.

Setting the Tool Icon

VectorScript plug-ins come preloaded with a default icon which is displayed
when the plug-in is placed in a workspace tool palette. This icon can be
replaced with a custom icon indicating the function of the plug-in item.
To create the icon, use a third-party icon editor. Tool icons use an 8-bit,
32-by-32 pixel field for defining the icon; the actual icon graphic, however,
should be confined to an area 24 pixels wide by 18 pixels high, centered in the
field. Once the icon is created, select the field and copy the icon to the
clipboard.

To create the VectorScript tool icon:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

Enter mode bar text for tool

Paste icon into field
VectorScript Language Guide 12-3

VectorScript Tool Items
The Tool Properties dialog box opens.

2. Click in the icon display field to select it. The icon field will be
highlighted.

3. Paste the new tool icon into the icon field. The customized icon should
be visible in the tool icon field of the dialog box.

Setting Activation Options for the Tool

Activation options for objects control the conditions under which the object
script code will execute. VectorWorks presets these options to the optimal
configuration for object interaction with the VectorWorks application.

Setting View Projection for the Tool

The projection property of the tool determines what view projection must be
active for the tool to be used in the document. If the required projection is not
active, the user will be prompted before the view orientation is switched to the
correct projection.
To set the view projection property:
1. Click the Properties button in the Plug-in Editor dialog box.

The Tool Properties dialog box opens.

2. Select the appropriate projection option for the plug-in.

Sets the tool projection property
12-4 VectorScript Language Guide

Setting Options for the Tool
12
Setting Script Execution Options for the Tool

Tool items are set by default to execute immediately when selected. In some
cases, however, it may be desirable to have the script execution wait for
mouse movement (such as a tool which draws interactively based on user
mouse movement).
To set the script execution property:
1. If the Tool Properties dialog is not already open, click the Properties

button from the VectorScript Plug-in Editor dialog box.

The Tool Properties dialog box opens.

2. Select the appropriate script execution option for the tool.

Setting Help Text for the Object

Help text describing the object will display when the cursor is held over the
object icon in a tool palette.
To create help text for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Tool Properties dialog box opens.

2. Enter the desired help text in the Help field. The text will be displayed
when help text is enabled and the cursor placed over the tool item.

Sets the script execution property
VectorScript Language Guide 12-5

VectorScript Tool Items
Parameters and VectorScript Tools

Tool items can have parameter records associated with the plug-in item. Such
records can be used for persistent data storage between uses of the tool, as
well as for setting default tool item values. A tool might, for example, provide
several mode options in a popup list. Should the user wish to select a different
mode for the tool, the new setting can be saved and reused on a subsequent
use of the tool item.
A default parameter record is also created in the document when on the first
use of the tool item in the active document. This default parameter record
stores the tool item’s default settings with the document. It is used by the tool
when the tool is activated for use.
Switching documents will display stored values associated with the new
document or, if no parameter record exists, will display the default values of
the parameter record as created by the plug-in item.

Creating a Parameter Record for a Tool

To create a parameter record:
1. Click the Parameters button from the VectorScript Plug-in Editor

dialog box.

The Parameters dialog box opens.

2. Create the desired parameter record fields for the plug-in. For details on
plug-in parameters, see “Using VectorScript Plug-ins” on page 10-1.

Enter the help text for the tool
12-6 VectorScript Language Guide

Creating the Tool Script
12
3. When all parameters have been created, click OK to save them.

Creating the Tool Script

The script source code for the tool item plug-in can be created using the
VectorScript editor, or it can be created with a third-party text editor and
imported into the plug-in. The source code is then saved as part of the plug-in
item.

Creating Script Code for a Tool

To create script code:
1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

3. When the script has been entered, click OK to save the script as part of
the plug-in.
VectorScript Language Guide 12-7

VectorScript Tool Items
Working With Tool Items

Adding a Tool to a Workspace

Once a tool item plug-in has been created, it will need to be added to one or
more workspaces to be available for use with VectorWorks. Once the tool has
been added to the workspace, it will immediately be available for use in the
current VectorWorks session.
To add a tool item to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

2. In the list of available tools in the Workspace Editor, look for the
category that was assigned to the tool item. Click the disclosure triangle
to display the available items in the category.

3. Click and drag the tool item to the desired location on a tool palette. If
desired, add a key equivalent for the tool item.

4. Click OK to save the workspace with the added tool item.

Once the tool has been added, it should display the icon for the tool in the
position where the tool was placed. To activate the tool item, simply
click on it as if it were a standard VectorWorks tool.

Setting Tool Item Defaults

VectorScript tool items can be integrated into a workspace and used in
conjunction with other tools during a VectorWorks session. VectorScript tools
can be selected from a tool palette, make use of the SmartCursor, and
generally perform the same tasks as any standard VectorWorks tool.
Tools which have a defined parameter record will display a plug-in
preferences button on the mode bar. This button provides access to the default
parameter record of the tool.

For details on editing
workspaces, see
Appendix B in the
VectorWorks User’s
Guide.

Click to edit parameter record of tool
12-8 VectorScript Language Guide

Working With Tool Items
12
Clicking the plug-in preferences button of the tool will display the preferences
dialog box for the tool item. The default values stored in the parameter record
will be displayed in the dialog box.
The parameter values can be edited as desired, then saved back to the
parameter record by clicking OK. The new values will become the default
settings for the tool on its next use.
VectorScript Language Guide 12-9

VectorScript Tool Items
12-10 VectorScript Language Guide

1313

13VectorScript Point Objects
In this Chapter:

• Creating a Point
Object Plug-in

• Setting Options
for the Object

• Parameters and
Point Objects

• Creating the
Object Script

• Setting Object
Insertion Options

• Working with
Point Objects

• Using Point
Objects with the
Resource
Browser
VectorScript parametric objects allow whole new classes of
objects to be defined for use with VectorWorks. It is
possible to create complex objects which can perform a
wide array of tasks: standard architectural or mechanical
elements, "smart" drawing components such as callouts or
drawing borders, or other flexible objects which streamline
the design process.
Parametric objects support standard VectorWorks core
technologies such as snapping, classing, and advanced
object editing. This support means that using parametric
objects is no different than working with any of
VectorWorks basic object types. VectorScript parametric
objects are extremely flexible—object plug-ins can be
created with up to 32,767 parameters for defining and
editing the appearance of an object in the document.
Objects are also portable; to share a parametric object,
simply copy the object plug-in to the VectorWorks Plug-ins
folder, add the object to a workspace, and the object is
immediately available for use with VectorWorks.
The most basic type of VectorScript parametric object is the
point object. Point objects are so named because they are
defined by a single point click for placement in a
VectorWorks document. This section documents the basic
techniques needed to create and use point objects with
VectorWorks.

Creating a Point Object Plug-in

VectorScript parametric objects are created using the
VectorWorks Plug-in Editor to create and define the actual
plug-in item. The Plug-in Editor provides a single interface
for creating the plug-in script and editing the associated
settings objects will use when placed during a VectorWorks
session.
VectorScript Language Guide 13-1

VectorScript Point Objects
Creating the Object Plug-in

To create a object plug-in:
1. Select Organize > Scripts > Create Plug-in.

2. In the VectorScript Plug-in Editor dialog box, click New.

3. In the Assign Name dialog box, enter the name of the new plug-in item
and select Point Object as the type of the plug-in. Click OK to create
the plug-in item.

Setting the Object Category

To set the category:
1. Click the Category button from the VectorScript Plug-in Editor dialog

box.

2. In the Assign Category dialog box, enter the name of the category to be
associated with the new object plug-in item. Click OK to set the plug-in
category to the new value.

Enter the name of the new plug-in

Select the type of plug-in

Enter the new category
for the plug-in
13-2 VectorScript Language Guide

Setting Options for the Object
13
The plug-in category is the heading under which the object may be found
when selecting items in the Workspace Editor.

Setting Options for the Object

Point objects have a several settings which allow them to maintain behavior
consistent with standard VectorWorks tools. These settings, also known as
plug-in properties, control how the object is placed, as well as the various
default values for the object when it is created.

Setting Display Defaults for the Object

To set the display defaults:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired descriptive text to be displayed in the mode bar in the
Mode Bar String field.

Mode bar text usually includes the name of the tool, and can include text
indicating the action the user should perform.

3. Click OK to save the new settings for the object.

Setting the Object Icon

VectorScript plug-ins come preloaded with a default icon which is displayed
when the plug-in is placed in a workspace tool palette. This icon can be
replaced with a custom icon indicating the function of the plug-in item.
To create the icon, use a third-party icon editor. Tool icons use an 8-bit,
32-by-32 pixel field for defining the icon; the actual icon graphic, however,
should be confined to an area 24 pixels wide by 18 pixels high, centered in the
field.

Enter mode bar text
VectorScript Language Guide 13-3

VectorScript Point Objects
To create the VectorScript object icon:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Click in the icon display field to select it. The icon field is highlighted.

3. Paste the new object icon into the icon field. The customized icon is now
visible in the icon field of the dialog box.

4. Click OK to save the new settings for the object.

Setting Activation Options for the Object

Activation options for objects control the conditions under which the object
script code will execute. VectorWorks presets these options to the optimal
configuration for object interaction with the VectorWorks application.

Setting the Default Class of the Object

Objects can be specified to have a default class setting on insertion into a
document. This preset default class allows objects to be automatically classed
without the class being active, or requiring additional editing using the Object
Info palette.
To define a default class for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired class name in the default class field.

Paste icon into field

Enter default class name
13-4 VectorScript Language Guide

Setting Options for the Object
13
If the default class does not exist in the document when the object is placed,
the class will be automatically created.

Setting Help Text for the Object

Help text describing the object will display when the cursor is held over the
object icon in a tool palette.
To create help text for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired help text in the Help field. The text will be displayed
when help text is enabled and the cursor placed over the tool item.

3. Click OK to save the new settings for the object.

Setting Object Reset Options

Objects have two properties which control when the geometry of the object
will be recalculated and regenerated in the document. These properties are
known as the object reset options.

By default, object geometry will only be recalculated if the object is edited via
object parameters or control points. This is an important point, because when
object geometry is recalculated, document default settings for attributes such
as font, text size or line color will be reapplied to the object. If any of these
settings have been modified since the object was placed or last edited,
changes in the appearance of the object may occur. The default reset options
allow objects to be manipulated without invoking object regeneration.
For instances where it is important that the object recalculate (for example,
windows placed in a wall), objects can be optionally set to recalculate their
geometry when the object has been moved or rotated.

Enter help text for the object
VectorScript Language Guide 13-5

VectorScript Point Objects
To set the object reset options:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, click on the desired object reset
option to activate it.

Selecting the Reset on Rotate option will cause the object to
recalculate when the object is rotated in the document. Selecting the
Reset on Move will cause the object to recalculate when the object is
moved in either 2D or 3D, as well as when the object is cut and pasted
into the document

3. Click OK to save the new settings for the object.

The new reset options for the object will take effect immediately.

Parameters and Point Objects

The parameters which define the appearance of a VectorScript point object are
stored in a parameter record which is associated with each point object
instance placed in the document. The parameters for each object instance may
be modified by using the Object Info palette to access the values in the object
parameter record.
A default parameter record is also created in the document when the first
instance of an object is created in the active document. This default parameter
record, which is distinct from the parameter records associated with object
instances, stores the object default settings with the document. It is used when
placing subsequent object instances to define the defaults for each new object
instance.

Creating a Parameter Record for an Object

To create a parameter record:
1. Click the Parameters button from the VectorScript Plug-in Editor

dialog box.

Click to activate reset option
13-6 VectorScript Language Guide

Creating the Object Script
13
The Parameters dialog box opens.

2. Create the desired parameter record settings for the plug-in. For details
on specific plug-in parameter types, see “Using VectorScript Plug-ins”
on page 10-1.

3. When all the desired parameters have been created, click OK to save the
parameters.

When an object instance is placed in the document, the object’s parameter
record can be edited using the Object Info palette.

Creating the Object Script

The script source code for the object plug-in can be created using the
VectorScript editor or a third-party text editor. The source code is saved as
part of the plug-in item.

Creating Script Code for a Point Object

To create a script code:
1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

Create parameters with
default values for object
VectorScript Language Guide 13-7

VectorScript Point Objects
3. When the script has been entered, click OK to save the script as part of
the plug-in.

Setting Object Insertion Options

Objects, like symbols, can be assigned predefined insertion options for
document placement. These options allow objects to properly interact with
walls or other advanced VectorWorks object types.

Setting Insertion Options for a Point Object

To set insertion options:
1. Click the Insert Options button from the VectorScript Plug-in Editor

dialog box.

2. In the Insertion Options dialog box, select the desired option settings for
the object.

Select insertion options
for object
13-8 VectorScript Language Guide

Working with Point Objects
13
For objects which do not require insertion options, leave the options at the
default settings.

Working with Point Objects

Working with objects incorporates elements of tool and symbol usage. Like
tools, objects can be selected from tool palettes and make use of the
SmartCursor, mode bar, and other core VectorWorks features. Like symbols,
objects can be inserted into walls, and can optionally be configured to be
available from the Object Browser.
Working effectively with point objects requires the knowledge of several
basic techniques for managing and using objects with VectorWorks and
VectorWorks documents.

Adding a Point Object to a Workspace

Once an object plug-in has been created, it will need to be added to one or
more workspaces in order to be available for use with VectorWorks. Object
plug-ins are functionally similar to tool items, and may be placed into tool
palettes for use. Once the object has been added to the workspace, it will
immediately be available for use in the current VectorWorks session.
To add an object to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

2. Switch to the tools pane in the Workspace Editor, and then look for the
category that was assigned to the new object plug-in. Click the disclosure
triangle to display the available items in the category.

3. Click and drag the object plug-in to the desired location on a tool palette.
If desired, add a key equivalent for the object.

4. Click OK to save the edited workspace.

Once the object has been added, the object should be visible on the tool
palette. To activate the object, click on the item as if it were a standard
VectorWorks tool.

For details on editing
workspaces, see
Appendix B in the
VectorWorks User’s
Guide.

Object is available in tool palette
VectorScript Language Guide 13-9

VectorScript Point Objects
Placing Objects in Documents

Placing objects in documents is very similar to using any other VectorWorks
tool. Objects, like VectorWorks tools, make use of the SmartCursor, mode bar,
and constraints to allow precise placement of the object. Once placed, the
object can be edited using the Object Info palette, and can be manipulated in
much the same way as any of the basic VectorWorks object types.
Point objects, as their name indicates, are placed by defining a single point
location in the document which is the insertion point for the object. The
insertion point of the object corresponds to the origin (0,0) of the object
definition.
To place a point object in a document:
1. Open the tool palette containing the object and click the icon of the

object to activate it.

2. Select the desired insertion mode, and if the object is to be inserted into a
wall, optionally select the appropriate wall mode from the mode bar.

3. Move the cursor to the desired insertion location for the object.

The cursor should drag a preview outline of the object to be placed, and
respond to any active constraints.

4. Click to define the insertion location and place the object.

Preview outline of object displays
during placement of object
13-10 VectorScript Language Guide

Working with Point Objects
13
When the first instance of an object is placed in the document, the plug-in
preferences dialog box will display, allowing default settings for subsequent
object placement to be modified before the default parameter record is created
in the document.
Default object parameter settings can be accessed at any time from the plug-in
preferences button displayed in the mode bar when the object palette icon is
selected.

Editing Objects in the Document

Once an object is placed in a document, the settings for the specific document
can be modified at any time by selecting the object instance and editing the
object through the Object Info palette.
To edit an object instance in the document:
1. Select the object instance to be edited.

2. Select Window > Palettes > Object Info to open the Object Info
palette.

3. Edit the object instance as desired.

The object specific parameters will be listed below a set of basic object
editing controls which is available for any object.

Click to place object in document
VectorScript Language Guide 13-11

VectorScript Point Objects
Using Point Objects with the Resource Browser

The VectorWorks Resource Browser provides a streamlined process for
browsing and selecting both symbols and objects for placement in a
VectorWorks document. Browser items can be selected from the currently
open document, or from other documents which act as "libraries" and which
can be saved as Favorites. The Resource Browser interface provides an
important tool for working with plug-in objects in VectorWorks.
There are several methods for making point objects available through the
Resource Browser. Objects can be saved as a regular (static) symbol, and can
then placed in the document as needed. Objects can also be saved as object
symbols which revert back to a plug-in when placed. Unlike static symbols,
object symbols allow objects to be stored with any specified parameter
combination as a default, while still retaining the ability for the object to be
edited at any time after placement. Combinations of objects can also be saved
as a group symbol, where the symbol is converted to a group on placement
in the document. Group symbols, like object symbols, allow the component
objects to retain their editable characteristics, but group the component items
into a single entity for ease of editing.

Creating Static Symbols with Objects

To create static symbols:
1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

4. Click OK to create the symbol.

Enter name of symbols

Select symbol options
13-12 VectorScript Language Guide

Using Point Objects with the Resource Browser
13
The new symbol appears in the Resource Browser. If it is not visible,
check to make sure the active document is selected for browsing.

The symbol can now be placed by clicking on the icon, and then
selecting Make Active from the Resources menu.

An object that is contained within a static symbol can be reverted to a plug-in
object. To revert the object:
1. Select the symbol instance and choose Organize > Convert to

Plug-in.

2. Select the appropriate conversion options and click OK. The symbol will
revert to a plug-in object.

Creating Object Symbols

To create object symbols:
1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

4. Click Options and select the Convert to Plug-in option in the
Insertion Options dialog box. Select any other options appropriate for the
object symbol, and then click OK to save the options.

Enter name of symbol

Select symbol options
VectorScript Language Guide 13-13

VectorScript Point Objects
5. Click OK to create the object symbol

The new symbol appears in the Resource Browser. If it is not visible, check to
make sure the active document is selected for browsing.
Note that an object symbol differs in appearance from static symbols, with the
object symbol appearing as a red icon.
The symbol can now be placed by clicking on the icon, and then selecting
Make Active from the Resources menu. When placed, the symbol will
automatically revert to a plug-in object. The parameter configuration saved
when the object symbol was created will act as the default settings for the
object. The object parameter settings can be edited as desired after placement.

Creating Group Symbols with Objects

To create group symbols:
1. Place the items that will be components of the group symbol in the active

document.

2. Specify the desired parameters for any objects, then select all the items to
be included in the group symbol. Any objects will retain their displayed
appearance when the group symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new group
symbol and select the desired options.

4. Click Options and select the Convert to Group option in the
Insertion Options dialog. Select any other options appropriate for the
object symbol, and then click OK to save the options.

Select Convert to
Plug-in Object

option
13-14 VectorScript Language Guide

Using Point Objects with the Resource Browser
13
5. Click OK to create the group symbol.

The new group symbol appears in the Resource Browser. If it is not visible,
check to make sure the active document is selected for browsing.
Note that a group symbol also differs in appearance from static symbols, with
the object symbol appearing as a blue icon.
The group symbol can now be placed by clicking on the icon, and then
selecting Make Active from the Resources menu. When placed, the
symbol will automatically convert to an object group. Any objects in the
group can be modified by entering the group and editing the objects as
desired.

Select Convert to
Group option
VectorScript Language Guide 13-15

VectorScript Point Objects
13-16 VectorScript Language Guide

1414

14VectorScript Linear Objects
In this Chapter:

• Creating a Linear
Object Plug-in

• Setting Options
for the Object

• Parameters and
Linear Objects

• Creating the
Object Script

• Setting Object
Insertion Options

• Working with
Linear Objects

• Using Linear
Objects with the
Resource
Browser
VectorScript linear objects are the second of the four
plug-in object types available in VectorWorks. Linear
objects, like point objects, are named according to how
they are defined in the VectorWorks document. Linear
objects require a user-defined line to create the basic
geometry of the object.
Like all other objects, linear objects support the standard
VectorWorks core technologies, and behave similarly to
VectorWorks basic object types. Linear objects can be
edited using the Object Info palette, but can also be edited
on-screen using the SmartCursor to modify the object
instance
This section documents the basic techniques needed to
create and use linear objects in your VectorWorks
documents.

Creating a Linear Object Plug-in

VectorScript parametric objects are created using the
VectorWorks Plug-in Editor to create and define the actual
plug-in item. The Plug-in Editor provides a single interface
for creating the plug-in script and editing the associated
settings objects will use when placed during a VectorWorks
session.

Creating the Object Plug-in

To create an object plug-in:
1. Select Organize > Scripts > Create Plug-in.

The VectorScript Plug-in Editor dialog box opens.

2. Click the New button.
VectorScript Language Guide 14-1

VectorScript Linear Objects
The Assign Name dialog box opens.

3. Enter the name of the new plug-in item and select Linear Object as the
type of the plug-in. Click OK to create the plug-in.

Setting the Object Category

To set the object category:
1. Click the Category button from the VectorScript Plug-in Editor dialog

box.

The Assign Category dialog box opens.

2. Enter the name of the category to be associated with the new object
plug-in item. Click OK to set the plug-in category to the new value.

The plug-in category is the heading under which the object may be found
when selecting items in the Workspace Editor.

Enter the name of the
new plug-in

Select the type of plug-in

Enter the new category
for the plug-in
14-2 VectorScript Language Guide

Setting Options for the Object
14
Setting Options for the Object

Linear objects have several settings which allow them to maintain behavior
consistent with standard VectorWorks tools. These settings, also known as
plug-in properties, control how the object is placed, as well as the various
default values for the object when it is created.

Setting Display Defaults for the Object

To set the display defaults:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired descriptive text to be displayed in the mode bar in the
Mode Bar String field.

Mode bar text usually includes the name of the tool, and can include text
indicating the action the user should perform.

3. Click OK to save the new settings for the object.

Setting the Object Icon

VectorScript plug-ins come preloaded with a default icon which is displayed
when the plug-in is placed in a workspace tool palette. This icon can be
replaced with a custom icon indicating the function of the plug-in item.
To create the icon, use a third-party icon editor. Tool icons use an 8-bit,
32-by-32 pixel field for defining the icon; the actual icon graphic, however,
should be confined to an area 24 pixels wide by 18 pixels high, centered in the
field.
To create the VectorScript object icon:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

Enter mode bar text
VectorScript Language Guide 14-3

VectorScript Linear Objects
2. Click in the icon display field to select it. The icon field is highlighted.

3. Paste the new object icon into the icon field. The customized icon should
be visible in the icon field of the dialog box.

4. Click OK to save the new settings for the object.

Setting Activation Options for the Object

Activation options for objects control the conditions under which the object
script code will execute. VectorWorks presets these options to the optimal
configuration for object interaction with the VectorWorks application.

Setting the Default Class of the Object

Objects can be specified to have a default class setting on insertion into a
document. This preset default class allows objects to be automatically classed
without the class being active, or requiring additional editing using the Object
Info palette.
To define a default class for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired class name in the default class field.

If the default class does not exist in the document when the object is placed,
the class will be automatically created

Setting Help Text for the Object

Help text describing the object will display when the cursor is held over the
object icon in a tool palette.

Paste icon into field

Enter default class name
14-4 VectorScript Language Guide

Setting Options for the Object
14
To create help text for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Enter the desired help text in the Help field. The text will be displayed
when help text is enabled and the cursor placed over the tool item.

3. Click OK to save the new settings for the object.

Setting Object Reset Options

Objects have two properties which control when the geometry of the object
will be recalculated and regenerated in the document. These properties are
known as the object reset options.
By default, object geometry will only be recalculated if the object is edited by
object parameters or control points. This is an important point, because when
an object geometry is recalculated, document default settings for attributes
such as font, text size or line color will be reapplied to the object. If any of
these settings have been modified since the object was placed or last edited,
changes in the appearance of the object may occur. The default reset options
allow objects to be manipulated without invoking object regeneration.
For instances where it is important that the object recalculate (for example,
windows placed in a wall), objects can be optionally set to recalculate their
geometry when the object has been moved or rotated
To set the object reset options:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

The Object Properties dialog box opens.

2. Click the desired reset option to activate it.

Enter help text for the object
VectorScript Language Guide 14-5

VectorScript Linear Objects
Selecting the Reset on Rotate option will cause the object to
recalculate when the object is rotated in the document. Selecting Reset
on Move will cause the object to recalculate when the object is moved
in either 2D or 3D, as well as when the object is cut and pasted into the
document.

3. Click OK to save the new settings for the object.

The new reset options for the object will take effect immediately.

Parameters and Linear Objects

The parameters which define the appearance of a VectorScript linear object
are stored in a parameter record which is associated with each point object
instance placed in the document. The parameters for each object instance may
be modified by using the Object Info palette to access the values in the object
parameter record.
A default parameter record is also created in the document when the first
instance of an object is created in the active document. This default parameter
record, which is distinct from the parameter records associated with object
instances, stores the object default settings with the document. It is used when
placing subsequent object instances to define the defaults for each new object
instance.
Parameter records for linear objects contain a predefined parameter,
LineLength, which contains the length of the axis which defines the linear
object. This predefined parameter may be edited, but cannot be deleted.

Creating a Parameter Record for an Object

To create a parameter record:
1. Click the Parameters button from the VectorScript Plug-in Editor

dialog box.

Click to activate reset option
14-6 VectorScript Language Guide

Creating the Object Script
14
2. The Parameters dialog box should display the predefined LineLength
parameter which contains the axis length of the linear object. If desired,
specify the a new default value for the object axis.

3. Create the desired parameter record settings for the plug-in. For details
on specific plug-in parameter types, see “Using VectorScript Plug-ins”
on page 10-1.

4. When all the parameters have been created, click OK to save the
parameters.

When an object instance is placed in the document, the object’s parameter
record can be edited using the Object Info palette.

Creating the Object Script

The script source code for the object plug-in can be created using the
VectorScript editor or a third-party text editor. The source code is saved as
part of the plug-in item.

Edit the axis length

Create parameters with default values for object
VectorScript Language Guide 14-7

VectorScript Linear Objects
Creating Script Code for a Linear Object

To create script code:
1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

3. When the script has been entered, click OK to save the script as part of
the plug-in.

Setting Object Insertion Options

Objects, like symbols, can be assigned predefined insertion options for
document placement. These options allow objects to properly interact with
walls or other advanced VectorWorks object types.

Setting Insertion Options for a Linear Object

To set insertion options:
1. Click the Insert Options button from the VectorScript Plug-in Editor

dialog box.

The Insertion Options dialog box opens.

2. Select the desired option settings for the object.
14-8 VectorScript Language Guide

Working with Linear Objects
14
For objects which do not require specific insertion options, leave the
options at the default settings.

Working with Linear Objects

Working with objects incorporates elements of tool and symbol usage. Like
tools, objects can be selected from tool palettes and make use of the
SmartCursor, mode bar, and other core VectorWorks features. Like symbols,
objects can be inserted into walls, and can optionally be configured to be
available from the Resource Browser.
Working effectively with point objects requires the knowledge of several
basic techniques for managing and using objects with VectorWorks and
VectorWorks documents.

Adding a Linear Object to a Workspace

Once an object plug-in has been created, it will need to be added to one or
more workspaces in order to be available for use with VectorWorks. Object
plug-ins are functionally similar to tool items, and may be placed into tool
palettes for use. Once the object has been added to the workspace, it will
immediately be available for use in the current VectorWorks session.
To add an object to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

2. Switch to the tools pane in the Workspace Editor.

3. Locate the category that was assigned to the new object plug-in. Click
the disclosure triangle to display the available items in the category.

4. Click and drag the object plug-in to the desired location on a tool palette.
If desired, add a key equivalent for the object.

Click OK to save the edited workspace.

Select object insertion
options

For details on editing
workspaces, see
Appendix B in the
VectorWorks User’s
Guide.
VectorScript Language Guide 14-9

VectorScript Linear Objects
Once the object has been added, the object should be visible on the tool
palette. To activate the object, click on the item as if it were a standard
VectorWorks tool.

Placing Objects in Documents

Placing linear objects in documents is very similar to using any other
VectorWorks tool. Objects, like VectorWorks tools, make use of the
SmartCursor, mode bar, and constraints to allow precise placement of the
object. Once placed, linear objects can be edited using the Object Info palette,
or they can be edited using the SmartCursor to resize the object along its
definition axis.
The insertion point of a linear object corresponds to the first click defining the
object axis, and acts as the origin (0,0) of the object definition.
To place a linear object in a document:
1. Open the tool palette containing the object and click the icon of the

object to activate it.

2. Select the desired insertion mode for the linear object.

3. Move the cursor to the desired insertion location for the object, and then
click to define the first point of the object definition axis.

Object is available in tool palette

Object insertion options

Plug-in preferences
14-10 VectorScript Language Guide

Working with Linear Objects
14
The cursor should drag a preview line from the first point of the object
axis, and respond to any active constraints.

4. Click to define the second point of the object axis and create the object.

When the first instance of an object is placed in a document, the plug-in
preferences dialog box will be displayed. This dialog allows the settings for
the default parameter record to be modified before it is created in the
document. Subsequent object instances will use the modified settings as their
defaults.
Default object parameter settings can be accessed at any time from the plug-in
preferences button displayed in the mode bar when the object palette icon is
selected.

Click and drag to define object axis

Definition axis of new object
VectorScript Language Guide 14-11

VectorScript Linear Objects
Editing Linear Objects in the Document

Once a linear object is placed in a document, the settings for the specific
object instance can be modified at any time by selecting the object and editing
it through the Object Info palette. Linear objects may also be modified by
redefining the object axis with the SmartCursor.
To edit an object instance in the document:
1. Select the object instance to be edited.

2. Select Window > Palettes > Object Info to open the Object Info
palette.

3. Edit the object instance as desired.

The object specific parameters will be listed below a set of basic object
editing controls which are available for any object.
To edit the object using the object definition axis:
1. Choose the selection tool, then select the object instance to be edited.

2. Move the cursor over the object axis point to be modified and hold until
the cursor changes to the reshape cursor.

3. Click on the axis point and drag to the desired location.

Position the cursor
over the object axis

endpoint

Drag axis point to new location
14-12 VectorScript Language Guide

Using Linear Objects with the Resource Browser
14
4. Release the mouse to define the new axis endpoint location.

Using Linear Objects with the Resource Browser

There are several methods for making linear objects available through the
Resource Browser. Like point objects, linear objects can be saved as a regular
(static) symbol, as an object symbol, or as part of a group symbol.

Creating Static Symbols with Linear Objects

To create static symbols:
1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol.

The Create Symbol dialog box opens.

4. Enter the name for the new symbol and select the desired options.

The plug-in origin for a linear object will be the first object axis
definition point. Linear objects in static symbols cannot be sized during
placement.

5. Click OK to create the symbol.

The new symbol appears in the Resource Browser. If it is not visible, check to
make sure the active document is selected for browsing.
The symbol can now be placed by clicking on the icon, and then selecting
Make Active from the Resources menu.

Enter name of symbol

Select symbol options
VectorScript Language Guide 14-13

VectorScript Linear Objects
An object that is contained within a static symbol can still be reverted to a
plug-in object.
To revert the object:
1. Select the symbol instance and choose Organize > Convert to

Plug-in.

2. Select the appropriate conversion options and click OK. The symbol will
revert to a plug-in object.

Creating Object Symbols with Linear Objects

To create object symbols:
1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol.

The Create Symbol dialog box opens.

4. Enter the name for the new symbol and select the desired options.

5. Click Options and select the Convert to Plug-in option in the
Insertion Options dialog. Select any other options appropriate for the
object symbol, and then click OK to save the options.

Enter name of symbol

Enter name of symbol
14-14 VectorScript Language Guide

Using Linear Objects with the Resource Browser
14
6. Click OK to create the object symbol

The new symbol appears in the Resource Browser. If it is not visible, check to
make sure the active document is selected for browsing.
Note that an object symbol differs in appearance from static symbols, with the
object symbol appearing as a red icon.
The symbol can now be placed by clicking on the icon and selecting Make
Active from the Resources menu. When placed, the linear object symbols
will automatically switch to the creation mode of the object, allowing the
object axis to be defined. The new linear object instance will then be created
in the document.

Creating Group Symbols with Linear Objects

To create group symbols:
1. Place the items that will be components of the group symbol in the active

document.

2. Specify the desired parameters for any objects, and then select all the
items to be include in the group symbol. Any objects will retain their
displayed appearance when the group symbol is created.

3. Select Organize > Create Symbol.

The Create Symbol dialog box opens.

4. Enter the name for the new group symbol and select the desired options.

5. Click Options and then Convert to Group in the Insertion Options
dialog box. Select any other options appropriate for the object symbol,
and then click OK to save the options.

Select Convert to
Plug-in Object

option
VectorScript Language Guide 14-15

VectorScript Linear Objects
6. Click OK to create the group symbol.

The new group symbol appears in the Resource Browser. If it is not visible,
check to make sure the active document is selected for browsing.
Group symbol symbols differ in appearance from static symbols, with the
symbol appearing as a blue icon.
The group symbol can now be placed by clicking on the icon, and then
selecting Make Active from the Resources menu. When placed, the
symbol will automatically convert to an object group. Any objects in the
group can be modified by entering the group and editing the objects as
desired.

Select Convert to
Group option
14-16 VectorScript Language Guide

1515

15VectorScript Rectangular

Objects
In this Chapter:

• Creating a
Rectangular
Object Plug-in

• Setting Options
for the Object

• Parameters and
Rectangular
Objects

• Creating the
Object Script

• Setting Object
Insertion Options

• Working with
Rectangular
Objects

• Using
Rectangular
Objects with the
Resource
Browser
VectorScript rectangular objects are the third of the
four plug-in object types available in VectorWorks.
Rectangular objects, like the other object types already
introduced, are named according to how they are defined in
the VectorWorks document. Rectangular objects utilize a
user-defined rectangle to define and create the basic
geometry of the object.
Rectangular objects support the standard VectorWorks core
technologies, and behave similarly to the basic
VectorWorks object types. Rectangular objects can be
edited using the Object Info palette or they can be edited
on-screen using the SmartCursor to modify the object
instance.
This section documents the basic techniques needed to
create and use rectangular objects in VectorWorks
documents.

Creating a Rectangular Object Plug-in

VectorScript parametric objects are created using the
VectorWorks Plug-in Editor to create and define the actual
plug-in item. The Plug-in Editor provides a single interface
for creating the plug-in script and editing the associated
settings object will use when placed during a VectorWorks
session.

Creating the Object Plug-in

To create an object plug-in:
1. Select Organize > Scripts > Create Plug-in.

2. In the VectorScript Plug-in Editor dialog box, click
New.
VectorScript Language Guide 15-1

VectorScript Rectangular Objects
The Assign Name dialog box opens.

3. Enter the name of the new plug-in item and select Rectangular Object
as the type of the plug-in. Click OK to create the plug-in item.

Setting the Object Category

To set the object category:
1. Click the Category button from the VectorScript Plug-in Editor dialog

box.

The Assign Category dialog box opens.

2. Enter the name of the category to be associated with the new object
plug-in item. Click OK to set the plug-in category to the new value.

The plug-in category is the heading under which the object may be found
when selecting items in the Workspace Editor.

Enter the name of hte new plug-in

Select the type of plug-in

Enter the new category
for the plug-in
15-2 VectorScript Language Guide

Setting Options for the Object
15
Setting Options for the Object

Rectangular objects have several settings which allow them to maintain
behavior consistent with standard VectorWorks tools. These settings, also
known as plug-in properties, control how the object is placed, as well as
the various default values for the object when it is created.

Setting Display Defaults for the Object

To set the display defaults:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, enter the desired descriptive text to
be displayed in the mode bar in the Mode Bar String field.

Mode bar text usually includes the name of the tool, and can include text
indicating the action the user should perform.

3. Click OK to save the new settings for the object.

Setting the Object Icon

VectorScript plug-ins come preloaded with a default icon which is displayed
when the plug-in is placed in a workspace tool palette. This icon can be
replaced with a custom icon indicating the function of the plug-in item.
To create the icon, use a third-party icon editor. Tool and object icons use an
8-bit, 32-by-32 pixel field for defining the icon; the actual icon graphic,
however, should be confined to an area 24 pixels wide by 18 pixels high,
centered in the field.
To create the VectorScript object icon:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

Enter mode bar text
VectorScript Language Guide 15-3

VectorScript Rectangular Objects
2. In the Object Properties dialog box, click in the icon display field to
select it. The icon field is highlighted.

3. Paste the new object icon into the icon field. The customized icon should
be visible in the icon field of the dialog box.

4. Click OK to save the new settings for the object.

Setting Activation Options for the Object

Activation options for objects control the conditions under which the object
script code will execute. VectorWorks presets these options to the optimal
configuration for object interaction with the VectorWorks application.

Setting the Default Class of the Object

Objects can be specified to have a default class setting on insertion into a
document. This preset default class allows objects to be automatically classed
without the class being active, or requiring additional editing using the Object
Info palette.
To define a default class for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, enter the desired class name in the
default class field.

If the default class does not exist in the document when the object is placed,
the class will be automatically created

Paste icon into field

Enter default class name
15-4 VectorScript Language Guide

Setting Options for the Object
15
Setting Help Text for the Object

Help text describing the object will display when the cursor is held over the
object icon in a tool palette.
To create help text for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, enter the desired help text in the
Help field. The text will be displayed when help text is enabled and the
cursor placed over the tool item.

3. Click OK to save the new settings for the object.

Setting Object Reset Options

Objects have two properties which control when the geometry of the object
will be recalculated and regenerated in the document. These properties are
known as the object reset options.
By default, object geometry will only be recalculated if the object is edited
using object parameters or control points. This is important, because when
object geometry is recalculated, the document default settings for attributes
such as font, text size or line color will be reapplied to the object. If any of
these settings has been modified since the object was placed or last edited,
changes in the appearance of the object may occur. The default reset options
allow objects to be manipulated without invoking object regeneration.
For instances where it is important that the object recalculate (for example,
windows placed in a wall), objects can be optionally set to recalculate their
geometry when the object has been moved or rotated
To set the object reset options:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, click the desired object reset option
to activate it.

Enter help text for the object
VectorScript Language Guide 15-5

VectorScript Rectangular Objects
Selecting the Reset on Rotate option will cause the object to
recalculate when the object is rotated in the document. Selecting Reset
on Move will cause the object to recalculate when the object is moved
in either 2D or 3D, as well as when the object is cut and pasted into the
document

3. Click OK to save the new settings for the object.

The new reset options for the object will take effect immediately.

Parameters and Rectangular Objects

The parameters which define the appearance of a VectorScript rectangular
object are stored in a parameter record which is associated with each point
object instance placed in the document. The parameters for each object
instance may be modified by using the Object Info palette to access the values
in the object parameter record.
A default parameter record is also created in the document when the first
instance of an object is created in the active document. This default parameter
record, which is distinct from the parameter records associated with object
instances, stores the object default settings with the document. It is used when
placing subsequent object instances to define the defaults for each new object
instance.
Parameter records for rectangular objects contain two predefined parameters,
LineLength and BoxWidth. LineLength contains the length measured
between the first and second mouse click during object placement. This value
is used to define the initial length of the object instance. The second
parameter, BoxWidth, is contains the length as measured between the second
and third mouse click defined during object placement. The BoxWidth value
is used to define the initial width of the rectangular object instance.
This predefined parameters for rectangular objects may be edited, but cannot
be deleted.

Click to activate reset option
15-6 VectorScript Language Guide

Parameters and Rectangular Objects
15
Creating a Parameter Record for an Object

To create a parameter record:
1. Click the Parameters button from the VectorScript Plug-in Editor

dialog box.

2. The Parameters dialog box should display the predefined LineLength
and BoxWidth parameters for the rectangular object. If desired, specify
new default values for these parameters.

3. Create the desired parameter record settings for the plug-in. For details
on specific plug-in parameter types, see “Using VectorScript Plug-ins”
on page 10-1.

4. When all the desired parameters have been created, click OK to save the
parameters.

When an object instance is placed in the document, the object’s parameter
record can be edited using the Object Info palette.

Edit the defaults
as desired

Create parameters with default values for object
VectorScript Language Guide 15-7

VectorScript Rectangular Objects
Creating the Object Script

The script source code for the object plug-in can be created using the
VectorScript editor or a third-party text editor. The source code is saved as
part of the plug-in item.

Creating Script Code for a Rectangular Object

To create script code:
1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

3. When the script has been entered, click OK to save the script as part of
the plug-in.

Setting Object Insertion Options

Objects, like symbols, can be assigned predefined insertion options for
document placement. These options allow objects to properly interact with
walls or other advanced VectorWorks object types.

Setting Insertion Options for a Rectangular Object

1. Click the Insert Options button from the VectorScript Plug-in Editor
dialog box.
15-8 VectorScript Language Guide

Working with Rectangular Objects
15
2. In the Insertion Options dialog box, select the desired option settings for
the object.

For objects which do not require specific insertion options, leave the
options at the default settings.

Working with Rectangular Objects

Working with objects incorporates elements of tool and symbol usage. Like
tools, objects can be selected from tool palettes and make use of the
SmartCursor, mode bar, and other core VectorWorks features. Like symbols,
objects can be inserted into walls, and can optionally be configured to be
available from the Resource Browser.
Working effectively with rectangular objects requires the knowledge of
several basic techniques for managing and using objects with VectorWorks
and VectorWorks documents.

Adding a Rectangular Object to a Workspace

Once an object plug-in has been created, it will need to be added to one or
more workspaces in order to be available for use with VectorWorks. Object
plug-ins are functionally similar to tool items, and may be placed into tool
palettes for use. Once the object has been added to the workspace, it will
immediately be available for use in the current VectorWorks session.
To add an object to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

Select insertion options for object
VectorScript Language Guide 15-9

VectorScript Rectangular Objects
2. Switch to the tools pane in the Workspace Editor, then look for the
category that was assigned to the new object plug-in. Click the disclosure
triangle to display the available items in the category.

3. Click and drag the object plug-in to the desired location on a tool palette.
If desired, add a key equivalent for the object.

4. Click OK to save the edited workspace.

Once the object has been added, the object should be visible on the tool
palette. To activate the object, click on the item as if it were a standard
VectorWorks tool.

Placing Objects in Documents

Placing rectangular objects in documents is very similar to using any other
VectorWorks tool. Objects, like VectorWorks tools, make use of the
SmartCursor, mode bar, and constraints to allow precise placement of the
object. Once placed, rectangular objects can be edited using the Object Info
palette, or they can be edited using the SmartCursor to resize the object from
any object handle.
The insertion point of a rectangular object corresponds to the first click
defining the object axis, and acts as the origin (0,0) of the object definition.
To place a rectangular object in a document:
1. Open the tool palette containing the object and click the icon of the

object to activate it.

2. Select the desired insertion mode for the rectangular object.

3. Move the cursor to the desired insertion location for the object, then click
to define the first point of the object definition axis.

For details on editing
workspaces, see
Appendix B in the
VectorWorks User’s
Guide.

Object is available in
tool palette
15-10 VectorScript Language Guide

Working with Rectangular Objects
15
The cursor should drag a preview line from the first point of the length
axis of the object, and respond to any active constraints.

4. Click to define the second point of the object length axis, then drag to
define the width of the rectangular object instance.

5. Click a third time to define the width of the object instance. The object
instance is then created in the document.

Click and drag to define object axis

LineLength

B
ox

W
id

th
Object width axis

Object length axis
VectorScript Language Guide 15-11

VectorScript Rectangular Objects
When the first instance of an object is placed in a document, the plug-in
preferences dialog box will be displayed. This dialog allows the settings for
the default parameter record to be modified before it is created in the
document. Subsequent object instances will use the modified settings as their
defaults.
Default object parameter settings can be accessed at any time from the plug-in
preference button displayed in the mode bar when the object palette icon is
selected.

Editing Rectangular Objects in the Document

Once a rectangular object is placed in a document, the settings for the specific
object instance can be modified at any time by selecting the object and editing
it through the Object Info palette. Rectangular objects may also be modified
by resizing the object with the SmartCursor.
To edit an object instance in the document:
1. Select the object instance to be edited.

2. Select Window > Palettes > Object Info to open the Object Info
palette.

3. Edit the object instance as desired.

The object specific parameters will be listed below a set of basic object
editing controls which are available for any object.
To edit the object with the SmartCursor:
1. Choose the selection tool, then select the object instance to be edited.

3

21
15-12 VectorScript Language Guide

Using Rectangular Objects with the Resource Browser
15
2. Move the cursor over any object handle to be modified and hold until the
cursor changes to the reshape cursor.

3. Click on the handle and drag to the desired location. Release the mouse
to redefine the object.

 Using Rectangular Objects with the Resource Browser

There are several methods for making rectangular objects available through
the Resource Browser. Like other objects, rectangular objects can be saved as
a regular (static) symbol, as an object symbol, or as part of a group symbol.

Creating Static Symbols with Rectangular Objects

1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

Position the cursor over any object
handle and reshape as desired
VectorScript Language Guide 15-13

VectorScript Rectangular Objects
Remember that the plug-in origin for a rectangular object is the first
point of the length axis. Rectangular objects in static symbols cannot be
sized during placement.

4. Click OK to create the symbol.

The new symbol appears in the Resource Browser. If it is not visible, check to
make sure the active document is selected for browsing.
The symbol can now be placed by clicking on the icon, and then selecting
Make Active from the Resources menu.
An object that is contained within a static symbol can still be reverted to a
plug-in object.
To revert the object:
1. Select the symbol instance and choose Organize > Convert to

Plug-in.

2. Select the appropriate conversion options and click OK. The symbol will
revert to an object instance.

Creating Object Symbols with Rectangular Objects

To create object symbols:
1. Place an instance of the object to be saved in the active document.

2. Specify the desired parameters for the object.

The parameters will be preserved and the object will retain the
appearance that was displayed when the symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

Enter name of symbol

Select symbol options
15-14 VectorScript Language Guide

Using Rectangular Objects with the Resource Browser
15
4. Click Options and then select the Convert to Plug-in in the Insertion
Options dialog. Select any other options appropriate for the object
symbol, then click OK to save the options.

5. Click OK to create the object symbol

The new symbol appears in the Resource Browser. If it is not visible, check to
make sure the active document is selected for browsing.
Note that an object symbol differs in appearance from static symbols, with the
object symbol appearing as a red icon.
The symbol can now be placed by clicking on the icon, and selecting Make
Active from the Resources menu. When placed, the rectangular object
symbols will automatically switch to the creation mode of the object, allowing
the length and width to be defined. The new rectangular object instance will
then be created in the document.

Creating Group Symbols with Rectangular Objects

To create group symbols:
1. Place the items that will be components of the group symbol in the active

document.

Enter name of symbol

Select options for the symbol

Select Convert To
Plug-in Object option
VectorScript Language Guide 15-15

VectorScript Rectangular Objects
2. Specify the desired parameters for any objects, and then select all the
items to be include in the group symbol. Any objects will retain their
displayed appearance when the group symbol is created.

3. Select Organize > Create Symbol.

The Create Symbol dialog box opens.

4. Enter the name for the new group symbol and select the desired options.

5. Click Options and then select Convert to Group in the Insertion
Options dialog. Select any other options appropriate for the object
symbol, then click OK to save the options.

6. Click OK to create the group symbol.

The new group symbol appears in the Resource Browser. If it is not visible,
check to make sure the active document is selected for browsing.
Group symbol symbols differ in appearance from static symbols, with the
symbol appearing as a blue icon.
The group symbol can now be placed by clicking on the icon, and then
selecting Make Active from the Resources menu. When placed, the
symbol will automatically convert to an object group. Any objects in the
group can be modified by entering the group editing the objects as desired.

Select Convert to
Group option
15-16 VectorScript Language Guide

1616

16VectorScript Path Objects
In this Chapter:

• Creating a Path
Object Plug-in

• Setting Options
for the Object

• Parameters and
Path Objects

• Creating the
Object Script

• Setting Object
Insertion Options

• Working With
Path Objects

• Using Path
Objects with the
Resource
Browser
VectorScript path objects are the last of the four plug-in
object types available in VectorWorks. Path objects, as with
the other object types already introduced, are named
according to how they are defined in the VectorWorks file.
Path objects utilize a user-defined polygonal path to define
and create the basic geometry of the object.
Path objects, like all other objects, support the standard
VectorWorks core technologies, and behave similarly to the
basic VectorWorks object types. Path objects can be edited
using the Object Info palette, or they can be edited
on-screen using the SmartCursor to modify the object
instance.
This section documents the basic techniques needed to
create and use path objects in VectorWorks files.

Creating a Path Object Plug-in

VectorScript parametric objects are created using the
VectorWorks Plug-in Editor to create and define the actual
plug-in item. The Plug-in Editor provides a single interface
for creating the plug-in script and editing the associated
settings objects will use when placed during a VectorWorks
session.

Creating the Object Plug-in

1. Select Organize > Scripts > Create Plug-in.

2. In the VectorScript Plug-in Editor dialog box, click
New.

3. In the Assign Name dialog box, enter the name of the
new plug-in item and select 2D Path Object as the
type of plug-in. Click OK to create the plug-in item.
VectorScript Language Guide 16-1

VectorScript Path Objects
Setting the Object Category

1. Click the Category button from the VectorScript Plug-in Editor dialog
box.

2. In the Assign Category dialog box, enter the name of the category to be
associated with the new object plug-in item. Click OK to set the plug-in
category to the new value.

The plug-in category is the heading under which the object may be found
when selecting items in the Workspace Editor.

Setting Options for the Object

Path objects have a several settings which allow them to maintain behavior
consistent with standard VectorWorks tools. These settings, also known as
plug-in properties, control how the object is placed, as well as the various
default values for the object when it is created.

Enter the name of the new
plug-in

Select the type of plug-in

Enter the new plug-in
category
16-2 VectorScript Language Guide

Setting Options for the Object
16
Setting Display Defaults for the Object

1. Click the Properties button from the VectorScript Plug-in Editor dialog
box.

2. In the Object Properties dialog box, enter the desired descriptive text to
be displayed in the mode bar in the Mode Bar String field.

Mode bar text usually includes the name of the tool, and can include text
indicating the action the user should perform.

3. Click OK to save the new settings for the object.

Setting the Object Icon

VectorScript plug-ins come preloaded with a default icon which is displayed
when the plug-in is placed in a workspace tool palette. This icon can be
replaced with a custom icon indicating the function of the plug-in item.
To create the icon, use a third-party icon editor. Tool and object icons use an
8-bit, 32-by-32 pixel field for defining the icon; the actual icon graphic,
however, should be confined to an area 24 pixels wide by 18 pixels high,
centered in the field.
To create the VectorScript object icon:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, click in the icon display field to
select it. The icon field is highlighted.

Enter mode bar text
VectorScript Language Guide 16-3

VectorScript Path Objects
3. Paste the new object icon into the icon field. The customized icon should
be visible in the icon field of the dialog box.

4. Click OK to save the new settings for the object.

Setting Activation Options for the Object

Activation options for objects control the conditions under which the object
script code will execute. VectorWorks presets these options to the optimal
configuration for object interaction with the VectorWorks application.

Setting the Default Class of the Object

Objects can be specified to have a default class setting on insertion into a file.
This preset default class allows objects to be automatically classed without
the class being active, or requiring additional editing using the Object Info
palette.
To define a default class for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, enter the desired class name in the
default class field.

Paste icon into field
16-4 VectorScript Language Guide

Setting Options for the Object
16
If the default class does not exist in the file when the object is placed, the class
will be automatically created.

Setting Help Text for the Object

Help text describing the object will display when the cursor is held over the
object icon in a tool palette.
To create help text for the object:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, enter the desired help text in the
Help field. The text will be displayed when help text is enabled and the
cursor placed over the tool palette item.

Enter default class name
VectorScript Language Guide 16-5

VectorScript Path Objects
3. Click OK to save the new settings for the object.

Setting Object Reset Options

Objects have two properties which control when the geometry of the object
will be recalculated and regenerated in the file. These properties are known as
the object reset options.
By default, object geometry will only be recalculated if the object is edited
using object parameters or control points. This is important, because when
object geometry is recalculated, the document default settings for attributes
such as font, text size or line color will be reapplied to the object. If any of
these settings has been modified since the object was placed or last edited,
changes in the appearance of the object may occur. The default reset options
allow objects to be manipulated without invoking object regeneration.
For instances where it is important that the object recalculate (for example,
windows placed in a wall), objects can be optionally set to recalculate their
geometry when the object has been moved or rotated.
To set the object reset options:
1. Click the Properties button from the VectorScript Plug-in Editor dialog

box.

2. In the Object Properties dialog box, click the desired object reset option
to activate it.

Enter object help text
16-6 VectorScript Language Guide

Parameters and Path Objects
16
Selecting the Reset on Rotate option causes the object to recalculate
when the object is rotated in the file. Selecting Reset on Move will
cause the object to recalculate when the object is moved in either 2D or
3D, as well as when the object is cut and pasted into the file

3. Click OK to save the new settings for the object.

The new recalculation options for the object take effect immediately.

Parameters and Path Objects

The parameters which define the appearance of a VectorScript path object are
stored in a parameter record which is associated with each point object
instance placed in the file. The parameters for each object instance may be
modified by using the Object Info palette to access the values in the object
parameter record.
A default parameter record is also created in the file when the first instance of
an object is created in the active file. This default parameter record, which is
distinct from the parameter records associated with object instances, stores the
object default settings with the file. It is used when placing subsequent object
instances to define the defaults for each new object instance.

Select the checkboxes to
activate the reset options
VectorScript Language Guide 16-7

VectorScript Path Objects
Creating a Parameter Record for an Object

1. Click the Parameters button from the VectorScript Plug-in Editor
dialog box.

2. In the Parameters dialog box, create the desired parameter record settings
for the plug-in. For details on specific plug-in parameter types, see
“Using VectorScript Plug-ins” on page 10-1.

3. When all the desired parameters have been created, click OK to save the
parameters.

When an object instance is placed in the file, the object’s parameter record can
be edited in the Object Info palette.
The Object Info palette also provides a convenient interface for editing the
definition path for path objects.

Creating the Object Script

The script source code for the object plug-in can be created using the
VectorScript editor or a third-party text editor. The source code is saved as
part of the plug-in item.

Creating Script Code for a Path Object

1. Click the Script button from the VectorScript Plug-in Editor dialog box.

2. Enter the script source code in the VectorScript Editor window.

Create parameter
record settings with

default values for the
object
16-8 VectorScript Language Guide

Setting Object Insertion Options
16
3. When the script has been entered, click OK to save the script as part of
the plug-in.

Setting Object Insertion Options

Objects, like symbols, can be assigned predefined insertion options for
placement. These options allow objects to properly interact with walls or
other advanced VectorWorks object types.

Setting Insertion Options for a Path Object

1. Click the Insert Options button from the VectorScript Plug-in Editor
dialog box.

2. In the Insertion Options dialog box, select the desired option settings for
the object.

Select object insertion
options
VectorScript Language Guide 16-9

VectorScript Path Objects
For objects which do not require specific insertion options, leave the options
at the default settings.

Working With Path Objects

Working with objects incorporates elements of tool and symbol usage. Like
tools, objects can be selected from tool palettes and make use of the
SmartCursor, mode bar, and other core VectorWorks features. Like symbols,
objects can be inserted into walls, and can optionally be configured to be
available from the Object Browser.
Working effectively with path objects requires the knowledge of several basic
techniques for managing and using objects with VectorWorks and
VectorWorks files.

Adding a Path Object to a Workspace

Once an object plug-in has been created, it will need to be added to one or
more workspaces in order to be available for use with VectorWorks. Object
plug-ins are functionally similar to tool items, and may be placed into tool
palettes for use. Once the object has been added to the workspace, it will
immediately be available for use in the current VectorWorks session.
To add an object to a VectorWorks workspace:
1. Select File > Workspaces > Workspace Editor.

2. Switch to the tools pane in the Workspace Editor, then look for the
category that was assigned to the new object plug-in. Click the disclosure
triangle to display the available items in the category.

3. Click and drag the object plug-in to the desired location on a tool palette.
If desired, add a key equivalent for the object.

4. Click OK to save the edited workspace.

Once the object has been added, the object should be visible on the tool
palette. To activate the object, click on the item as if it were a standard
VectorWorks tool.

For additional details on
editing workspaces, see
Appendix B in the
VectorWorks User’s Guide
16-10 VectorScript Language Guide

Working With Path Objects
16
Placing Objects in Files

Placing path objects is very similar to using any other VectorWorks tool.
Objects, like VectorWorks tools, make use of the SmartCursor, mode bar, and
constraints to allow precise placement of the object. Once placed, path objects
can be edited using the Object Info palette, or they can be edited using the
SmartCursor.
The insertion point of a path object corresponds to the first click defining the
objects’ path polygon, and acts as the origin (0,0) of the object definition.
To place a path object in a file:
1. Open the tool palette containing the object and click the object icon to

activate it.

2. Select the desired insertion mode for the path object.

3. Move the cursor to the desired insertion location for the object, and then
click to define the first point of the object path. Continue clicking to
define the vertices of the path as you would if you were defining a
polygon.

Object is available in
tool palette

Object insertion options

Plug-in preferences
VectorScript Language Guide 16-11

VectorScript Path Objects
The cursor displays an image preview from the most recently defined
vertex of the object path, and should respond to any active constraints.

4. Double-click to end defining the object path. The new path object will
then be created.

Define vertices of the object path
16-12 VectorScript Language Guide

Working With Path Objects
16
When the first instance of an object is placed in a file, the plug-in preferences
dialog is displayed. This dialog allows the settings for the default parameter
record to be modified before it is created in the file. Subsequent object
instances will use the modified settings as their defaults.
Default object parameter settings can be accessed at any time from the plug-in
preferences button displayed in the mode bar when the object palette icon is
selected.

Editing Path Objects

Once a path object has been placed, the settings for the specific object
instance can be modified by selecting the object and editing it in the Object
Info palette. Both object specific settings and object path information can be
edited from the Object Info palette.
To edit an object instance:
1. Select the object instance to be edited.

2. Select Window > Palettes > Object Info to open the Object Info
palette.
VectorScript Language Guide 16-13

VectorScript Path Objects
3. Edit the object instance as desired.

The object specific parameters will be listed below a set of basic object
editing controls which are available for any object. Below the object
specific parameter controls are a set of controls that can be used to edit
the object definition path.

Using Path Objects with the Resource Browser

There are several methods for making path objects available through the
Resource Browser. Like other objects, path objects can be saved as a regular
(static) symbol, as an object symbol, or as part of a group symbol.

Creating Static Symbols with Path Objects

1. Place an instance of the object to be saved in the active file.

2. Specify the desired parameters for the object.

When the symbol is created, the parameters will be preserved and the
object will retain the appearance that was displayed.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

Remember that the plug-in origin for a path object is the first point of the
object path. Path objects in static symbols cannot be defined during
placement.

4. Click OK to create the symbol.

The new symbol appears in the Resource Browser. If it is not visible,
check to make sure the active file is selected for browsing.

Enter name of symbol

Select symbol options
16-14 VectorScript Language Guide

Using Path Objects with the Resource Browser
16
The symbol can now be placed by clicking on the icon and selecting
Make Active from the Resources menu.

An object that is contained within a static symbol can still be reverted to a
plug-in object.

To revert the object:

1. Select the symbol instance and choose Organize > Convert to
Plug-in.

2. Select the appropriate conversion options and click OK. The symbol will
revert to an object instance.

Creating Object Symbols with Path Objects

1. Place an instance of the object to be saved in the active file.

2. Specify the desired parameters for the object.

When the symbol is created, the parameters will be preserved and the
object will retain the appearance that was displayed.

3. Select Organize > Create Symbol. Enter the name for the new
symbol and select the desired options.

4. Click Options and select the Convert to Plug-in option in the
Insertion Options dialog box. Select any other options appropriate for the
object symbol, then click OK to save the options.

Enter name of symbol

Select symbol options
VectorScript Language Guide 16-15

VectorScript Path Objects
5. Click OK to create the object symbol

The new symbol appears in the Resource Browser. If it is not visible,
check to make sure the active file is selected for browsing.

Note that an object symbol differs in appearance from static symbols, with the
object symbol appearing as a red icon.
The symbol can now be placed by clicking on the icon, and then selecting
Make Active from the Resources menu. When placed, the path object
symbols will automatically switch to the creation mode of the object, allowing
the length and width to be defined. The new path object instance will then be
created in the file.

Creating Group Symbols with Path Objects

1. Place the items that will be components of the group symbol in the active
file.

2. Specify the desired parameters for any objects, and then select all the
items to be included in the group symbol. Any objects will retain their
displayed appearance when the group symbol is created.

3. Select Organize > Create Symbol. Enter the name for the new group
symbol and select the desired options.

4. Click Options and select the Convert to Group option in the
Insertion Options dialog. Select any other options appropriate for the
object symbol, then click OK to save the options.

Select Convert to
Plug-in Object option
16-16 VectorScript Language Guide

Using Path Objects with the Resource Browser
16
5. Click OK to create the group symbol.

The new group symbol appears in the Resource Browser. If it is not visible,
check to make sure the active file is selected for browsing.
Group symbol symbols differ in appearance from static symbols, with the
symbol appearing as a blue icon.
The group symbol can now be placed by clicking on the icon, and then
selecting Make Active from the Resources menu. When placed, the
symbol will automatically convert to an object group. Any objects in the
group can be modified by entering the group and editing the objects as
desired.

Select Convert to
Group option
VectorScript Language Guide 16-17

VectorScript Path Objects
16-18 VectorScript Language Guide

1717

17VectorScript Development Tools
In this Chapter:

• Creating Scripts

• The VectorScript
Editor

• VectorScript
Plug-in Editor

• The VectorScript
Debugger
VectorWorks provides a suite of development tools for
creating and maintaining scripts and plug-ins. They include
a script editor, a script debugger, and a plug-in editor for
setting up and configuring VectorScript plug-ins. These
tools are integrated into the VectorWorks application, and
can be used directly from within the program.

Creating Scripts

VectorWorks provides several methods for creating,
managing and using scripts. The most basic of these
methods is to create a VectorWorks document and select
the File > Export > Export VectorScript command.
The command creates a script which can be run by the File
> Import > Import VectorScript command, or by
selecting the file in the Resource Browser, and then
selecting Run from the Resources menu.
The traditional method for storing scripts, which has been a
feature of VectorWorks since its original release as
MiniCad, is in document scripts. Document scripts are
stored with individual documents in script palettes,
which organize the scripts and can be displayed or hidden
as needed. Both document scripts and script palettes can be
created and accessed from the Resource Browser.
Beginning with VectorWorks 8, scripts can also be created
and stored as plug-ins. Plug-ins are used as a component of
a workspace, and can be accessed by any document. Scripts
in plug-ins can be used as tool items, tools, or parametric
objects. Plug-ins are created and maintained using the
plug-ins editor, which is accessed by selecting Organize >
Scripts > Create Plug-in.
VectorScript Language Guide 17-1

VectorScript Development Tools
Creating a Document Script

To create a document script:
1. In the Resource Browser, select New Resource from the Resources

menu.

2. Select the VectorScript option and click Create.

Newly created scripts are located by default in the active script palette
(the palette which is open and active, or which is open in the window of
the Resource Browser). If no script palette is active, you will be
prompted to select a location for the script. If no script palette exists in
the document, a new palette will be created to contain the script. The
Create Resource dialog box allows the creation of new Script Palettes as
well.

3. Enter the name of the script.

The script editor window will be displayed to create the script.

Editing an Existing Document Script (Resource
Browser)

1. In the Resource Browser, select the script to be edited.
17-2 VectorScript Language Guide

Creating Scripts
17
2. Select Open from the Resources menu. The VectorScript Editor
opens, displaying the script source code.

Editing an Existing Document Script (Script
Palette)

1. Open a script palette containing the script to be edited.

2. Option (Mac) or Alt (Win) + double-click on the script to be edited. The
VectorScript Editor opens, displaying the script source code.

Creating Scripts in the Plug-in Editor

1. Select Organize > Scripts > Create Plug-in.

2. Click New, and then select the type and enter the name of the plug-in to
be created.

3. Select the plug-in to be edited, and then click the Script button. The
VectorScript Editor opens, displaying the plug-in script source code.
VectorScript Language Guide 17-3

VectorScript Development Tools
To edit an existing plug-in, open the plug-ins editor, select the plug-in to
be edited, and click the Script button.

The VectorScript Editor

The VectorScript Editor provides a basic authoring environment for script
development and maintenance. Its features allow you to edit and compile
scripts, browse the API, view errors, as well as perform other tasks associated
with creating scripts.

Click to edit script
17-4 VectorScript Language Guide

The VectorScript Editor
17
Editor Options

The Editor Options pop-up menu provides access to the extended features of
the editor.

Procedure

The Procedure option provides access to a browser listing all the functions
found in the VectorScript API. Functions are listed by category and provide a
function prototype as well as a brief description of what operation is
performed by the function.

Editor options

Compile script Current line number
VectorScript Language Guide 17-5

VectorScript Development Tools
Inquiry

The Inquiry option provides a listing of all functions which use search
criteria. When used in conjunction with the Criteria option (see below),
custom queries or selections can easily be defined in a script.

Criteria

The Criteria option provides a convenient method of defining search criteria
for use in scripts. The dialog, which is similar to the Custom Selection dialog,
allows criteria to be chosen from a listing of available search options.

Tool / Attribute

The Tool / Attribute option provides a way of saving the current tool and
attribute state information into a script.

Parameters

The Parameters option provides access to a plug-in objects’ parameter list
for editing.

Select criteria to be included
in a script
17-6 VectorScript Language Guide

VectorScript Plug-in Editor
17
Text File

The Text File option allows script source code to be imported from external
text files.

Compile Script

The Compile Script button allows a script to be compiled directly from the
the VectorScript Editor without the need to execute the script. If errors exist
within the script which prevent successful compilation, they will be displayed
and can be resolved without the need to exit the script editor.

Line Number

The current position of the cursor within the edit field of the VectorScript
Editor is indicated by the line number displayed in the editor window.

VectorScript Plug-in Editor

The VectorScript Plug-in Editor is the VectorWorks interface for creating and
editing VectorScript plug-in objects. The editor provides tools for editing
scripts, preference settings, and parameter lists for all plug-in types.

Using the Plug-in Editor

To open the Plug-in Editor, select Organize > Scripts > Create Plug-in.

Plug-in list

Plug-in options
and settings

Plug-in management
VectorScript Language Guide 17-7

VectorScript Development Tools
The main editor window displays a listing of all available plug-ins in the
VectorWorks installation. The dialog also provides options for managing
plug-in files, as well as for accessing the various settings and options
available in each plug-in.

Managing Plug-ins

New

To create a new plug-in object, click the New button. When prompted, enter
the name and select the type of plug-in to be created.

Plug-in names are limited to twenty characters in length. The appropriate
plug-in extension will be appended to the plug-in name.

Rename

To rename an existing plug-in, select a plug-in from the list and click the
Rename button. Enter the new name for the plug-in and click OK.

Duplicate

To create a copy of an existing plug-in, select a plug-in from the list and click
the Duplicate button. Enter a name for the plug-in and click OK.

Delete

To delete an existing plug-in, select a plug-in from the list and click the
Delete button.

Enter name of plug-in

Select plug-in type
17-8 VectorScript Language Guide

VectorScript Plug-in Editor
17
Category

To specify a category for a plug-in, select a plug-in from the list and click the
Category button. When prompted, enter the name of category that will be
associated with the plug-in.
The plug-in category is the heading that the plug-in may be found under in the
Workspace Editor.

Plug-in Option Settings

Script

To modify the script associated with a plug-in item, click the Script button.
The VectorScript Editor will be displayed, allowing the script to be created or
edited.

Properties

To modify the properties associated with a plug-in item, click the Properties
button. The Properties dialog box specific to the type of the selected plug-in
item will be displayed.
For more details on specific plug-in properties, see “Using VectorScript
Plug-ins” on page 10-1.

Parameters

To create or modify parameters associated with the plug-in parameter record,
click the Parameters button. The Parameters dialog box will be displayed,
allowing specific parameter settings to be edited or created.

Parameter records may be created for any plug-in object type. Parameter
records for object plug-ins store data which defines the display characteristics
of the object; this information can also be edited from the Object Info palette.
Parameter records for custom tools and tool items store default and status
VectorScript Language Guide 17-9

VectorScript Development Tools
related data for the item; this information can only be edited through the
parameters dialog box.
For more details on plug-in object parameters, see “Using VectorScript
Plug-ins” on page 10-1.

Insert Options

To set insertion options for object plug-ins, click the Insert Options button.
The Insertion Options dialog box opens, where insertion options for the object
can be specified.

Insertion options cannot be specified for menu command or tool item
plug-ins. For more details on insertion options available for object plug-ins,
see Chapters 11 through 16.

The VectorScript Debugger

VectorScript provides a powerful tool to assist in solving problems that may
occur while developing scripts. This tool, known as a source-level
debugger, controls the execution so that the internal operations of the script
can be observed while the script is running. Using the debugger, it becomes
possible locate and solve problems by moving through the script line by line
to view the associated data, variables, and flow of script execution.

Launching the Debugger

The VectorScript debugger is activated by using the {$DEBUG} compiler
directive. This compiler directive, which can be placed anywhere within a
script, instructs the compiler to activate and display the debugger window
when the script is executed. For example,

PROCEDURE MakeCircle;

{$DEBUG}

VAR
17-10 VectorScript Language Guide

The VectorScript Debugger
17
This launches the VectorScript debugger and displays the window as shown:

The VectorScript debugger allows a script to be executed in a line-by-line
fashion, also known as "stepping" through the source code. The debugger
performs this task beginning at the first line of the script and continuing
through each line until the end of the script is reached.
When the debugger is launched, storage for variables and constants is defined
and script execution is paused at the first line of code in the script body. The

x1,y1,x2,y2,radius : REAL;

BEGIN

GetPt(x1,y1);

GetPtL(x1,y1,x2,y2);

radius:= Distance(x1,y1,x2,y2);

Oval(x1 - radius,y1 + radius,x2 + radius,y2 - radius);

END;

Run(MakeCircle);
VectorScript Language Guide 17-11

VectorScript Development Tools
debugger window is then displayed, providing a wide array of information on
the script and the current state of execution.

The Debugger Interface

The debugger window contains controls for managing script execution, as
well as several areas for displaying various data about the script and the state
of execution.

Debugger Controls

The debugger controls allow the execution of the script to be controlled
during the debugging process. Script execution can be started, stopped,
paused, or advanced one line at a time.

Debugger controls

Message pane

Script calling chain

Script source code

Variable data display
pane
17-12 VectorScript Language Guide

The VectorScript Debugger
17
See “Controlling Execution” on page 17-14 for details on controlling script
execution in the debugger.

Message Pane

The message pane displays information about the script. These messages may
include prompts for user interaction with the script, script status information,
or errors encountered in script execution.

Script Calling Chain

The script calling chain pane displays the current function calling chain of the
script. Each subroutine name appears below the function calling it in the list;
by highlighting the desired subroutine name, it is possible to determine which
subroutines are being called and the execution location within those
subroutines.
The script calling chain pane is resizable; to resize the pane, click and drag the
bottom border of the pane.

Script Source Code

The script source code pane displays the source code of the script being
debugged. The current location of execution in the script is indicated by the
small blue arrow on the left-hand side of the pane. This arrow indicates the
line of code that is about to be executed.
The script source code pane is resizable; to resize the pane, click and drag the
bottom border of the pane.

Variable Data Display

The variable data display pane displays the current values stored in variables,
arrays, and structures declared in the script. The display is updated as
execution proceeds, so that values can be continuously watched for changes
during execution.

Run script

Pause script

Kill script

Step over

Step into

Step out

Auto-step script

Auto-step speed
VectorScript Language Guide 17-13

VectorScript Development Tools
Arrays, elements, and structure members may be displayed by clicking on the
disclosure triangle that appears next to the item.
The variable data display pane is resizable; to resize the pane, click and drag
the top border of the pane. The data value area of the pane may also be
resized; to resize this area, click and drag the vertical divider bar in the pane.

Controlling Execution

Running a Script

To run a script in the debugger, click the Run button.

Running a script here is identical to running a script from a script palette or
plug-in; when the script has completed execution, the debugger window will
close.
Running scripts is primarily used in conjunction with setting a breakpoint in
the debugger. For details on setting and using breakpoints, see “Using
Breakpoints” on page 17-16.

Stepping Through a Single Line Of a Script

To execute a single statement in the script, click the Step Over button.

The Step Over button advances script execution by a single statement and
refreshes the data display pane of the debugger. The script position indicator
advances to indicate the new location of script execution. If the statement
which is stepped through is a user defined subroutine, all the code within the
subroutine is executed.
When stepping through a statement containing a user-interactive function call
(such as GetPt() or GetLine()), the debugger will prompt the user for
input. Custom dialog function calls will cause the dialog to become active
until a dialog event occurs; control is then returned to the debugger.

Stepping Into a Subroutine

To advance execution into a user defined subroutine, click the Step Into
button.
17-14 VectorScript Language Guide

The VectorScript Debugger
17
The Step Into button is used when a statement containing a call to a
user-defined subroutine is reached. Whereas the Step Over button will
execute all the code contained within the subroutine and move to the next
statement in the calling function, Step Into will advance script execution to
the first statement within the subroutine body.
The Step Into button performs a Step Over action with all other statements.

Stepping Out of a Subroutine

To advance execution from the current script location in a subroutine to the
next statement in the calling function, click the Step Out button.

When stepping out of a subroutine, all statements which follow the current
script location will be executed, and script execution will advance to the next
statement in the calling routine.

Auto-Step Through Script

To automatically step through a script on a line-by-line basis, click the
Auto-Step button.

The Auto-Step button will automatically advance the script at a speed
determined by the Auto-Step slider control.

Pausing Script Execution

To pause script execution, click the Pause Script button.

The Pause Script button will stop auto-step execution at the current
execution location in the script. Script execution can be resumed by clicking
the Auto-Step button.
The Pause Script button can also pause execution of scripts in infinite
loops; in some instances, however, Pause Script may not be able to stop
such loops.
VectorScript Language Guide 17-15

VectorScript Development Tools
Stopping Script Execution

To terminate execution of a script, click the Kill Script button.

The Kill Script button will immediately terminate script execution. After the
Kill Script button is pressed, the debugger window will close.

Using Breakpoints

A breakpoint suspends script execution and transfers control of the script to
the debugger. When a breakpoint is encountered, execution is suspended just
prior to the breakpoint, and the script execution pointer is positioned at the
breakpoint location.
Breakpoints are often used in order to run scripts and stop them just prior to a
statement or statements that are to be debugged. Once the script has stopped at
a breakpoint, it may be stepped through manually or by using the auto-step
feature.

Setting a Breakpoint

To set a breakpoint in the debugger, click the dash in the narrow column on
the left side of the script source code pane. The new break point will be
indicated by a small diamond at the break location.

Once a breakpoint has been set, the script can be executed using the Run
Script button. Script execution will pause when the breakpoint is reached, as
indicated by a highlighted breakpoint and execution pointer arrow. The
message pane of the debugger will also indicate that a break point has been
reached.

Click to set breakpoint in script

Breakpoint is
indicated by a

diamond
17-16 VectorScript Language Guide

The VectorScript Debugger
17
To continue execution, click either the Run Script, Step Over/Into/Out, or
Auto-Step buttons.
Breakpoints which have been placed in a looping statement will cause the
script to stop each time the breakpoint is encountered. When used in
conjunction with the Run Script or Auto-Step buttons, such breakpoints
can be used to observe conditions occurring within a loop during execution.
Care should be exercised when placing breakpoints within branching
statements such as IF..THEN or CASE statements. If the breakpoint is in a
branch outside the path of execution, the script will continue to execute.

Clearing Breakpoints

To clear a breakpoint in the debugger, click on the diamond indicating the
breakpoint location while script execution is stopped or paused. The
breakpoint will be removed from the script.

Viewing Data in the Debugger

Constant and variable data values may be observed during script execution in
the data display pane of the debugger. This pane displays all data storage
locations declared in the script, as well as the values contained within them.
The data display pane is updated as each statement is executed, so changes in
values can be observed as the script is running.

Message indicating status

Execution paused at
breakpoint
VectorScript Language Guide 17-17

VectorScript Development Tools
Vectors, array elements, and structure members can also be observed in the
data display pane during script execution. Items containing more than one
storage location are shown with a disclosure triangle to the left of the item
name. To view the storage locations contained within the item, click the
disclosure triangle; the individual locations and the values contained in them
will be displayed below the item name.

Variables declared in
script are displayed in

data pane
17-18 VectorScript Language Guide

The VectorScript Debugger
17
The view within data pane can be resized to accommodate data display. To
resize the value display, move the cursor over the divider line, then drag the
divider to the desired location.

Complex data types can
also be viewed in the data

pane
VectorScript Language Guide 17-19

VectorScript Development Tools
17-20 VectorScript Language Guide

AA

ANumeric and Data Formats
In this Chapter:

• Units and
Numeric Values in
Scripts

• Data Formatting
with Write and
WriteLn
Units and Numeric Values in Scripts

Numeric values which are associated with unit markings
follow these rules:
• VectorScript will scan for all legal predefined unit

marks when parsing numeric values. If illegal
characters are found after numeric values, a
VectorScript warning will be generated.

• VectorScript will not scan for user-defined unit marks.
• Numeric values in VectorScript which are bound to a

unit marking will be sized to be accurate to their unit
mark within the current units setting of the active
document. For example:

Rect(a,a,a + 1'2",a + 1'2");

will always draw a rectangle that is 14" on a side
independent of the units setting, and

Rect(a,a,a + 14cm,a + 14cm);

will always draw a rectangle which is 14 centimeters
on a side, independent of the document unit setting.

• Numeric values which are not bound to a unit marking
will be sized to the current units setting of the
document. For example:

Rect(a,a,a + 14,a + 14);

will draw a rectangle 14 document units on a side. If
the current units setting is Feet, the rectangle will be
14 feet on a side; if the units setting is millimeters, the
rectangle drawn will be 14 mm on a side.
VectorScript Language Guide A-1

Numeric and Data Formats
• Numeric constants are bound to any specified unit mark. For example:

will be bound to and retain its centimeter unit marking.

Absolute and Relative Modes

The default drawing mode of VectorScript is absolute mode. In absolute
mode, values passed as parameters for drawing or positioning objects are
assumed to be actual coordinate values relating to the VectorWorks coordinate
system. For example:

Rect(2',0',0',2');

will draw a rectangle with the top left corner at (2',0') and the bottom right
corner at (0',2').
In relative mode, values are assumed to be relative offsets from the current
drawing pen position in the active document. Using the example above:

Rect(2',0',0',2');

If the pen position prior to the call was (4',2'), the call would draw a
rectangle with its top left corner located at (4',4') and its bottom right
corner located at (6',2'). Additional drawing calls while in this mode
would be relative to the last function call which positioned the drawing pen.
VectorScript uses two calls, Absolute() and Relative(), to explicitly set
the drawing mode of the document. These calls can be used to set the
document draw mode and draw objects using offset rather than absolute
values. For example:

will draw a square polygon 1" on a side with the lower left corner located at
(2",2"). The same calls made without a call to Relative() will draw a
different polygon using absolute coordinate locations.
Once the relative mode is set, it will remain active until a call to Absolute()
or when the script finishes execution. Be sure to reset the drawing mode to the
desired state in order to ensure correct results from your script.

CONST

kX = 5.5cm;

Relative;

MoveTo(2",2");

Poly(1",0",0",1",-1",0",0",-1");
A-2 VectorScript Language Guide

Data Formatting with Write and WriteLn
A

Distance-angle Mode

VectorScript also supports an additional numeric mode for drawing objects,
distance-angle mode. With distance-angle mode, coordinate locations are
defined using a distance and a direction angle, similar to polar coordinates.
When specifying a distance-angle pair, the distance is specified in place of the
x-coordinate, and the angle is specified in place of the y-coordinate. For
example:

could be specified as

In distance-angle mode, the pound (#) sign is used to denote that an angle
value follows.
VectorScript supports a wide array of formats for specifying the angle
component of a distance-angle pair. The table below lists the supported angle
formats.

When using surveyors' units, be sure to use AngleVar() and
NoAngleVar() to ensure that the bearing values are interpreted correctly.

Data Formatting with Write and WriteLn

Each parameter in a Write or WriteLn parameter list may be formatted for
output as follows:

Relative;

MoveTo(2",2");

Poly(1",0",0",1",-1",0",0",-1");

Relative;

MoveTo(2",2");

Poly(1",#0d,1",#90d,1",#180d,1",#270d);

Angle Format Example

Integer value Rect(2,#90,2,#0);

Decimal value Rect(2,#89.5,2,#359.5);

Degrees Rect(2,#90d,2,#0d);

Degrees-minutes-seconds Rect(2,#90d15’12",2,#25d30’45");

Surveyors’ Units Rect(20’,#N45d30’00"E,15’,#S45d15’2"W);

Radians Rect(2,#1.57r,2,#0r);

Gradians Rect(2,#100g,2,#45g);
VectorScript Language Guide A-3

Numeric and Data Formats
 Parameter : [MinWidth] : [DecPlaces]

where the fields MinWidth and DecPlaces are optional.
MinWidth specifies the minimum overall field width, or number of
characters, in the data value. Its value must be greater than or equal to zero.

Numeric Values and Formatting

If MinWidth is less than the overall width of the value, VectorWorks
overrides the MinWidth so that the entire value is displayed (see also
DecPlaces below). If MinWidth is greater than the overall length of the
value, blank spaces will be appended to the beginning of the value.
For REAL data, DecPlaces allows control over the display of the number of
decimal places in the value. DecPlaces works independently of the
MinWidth format specifier.

If DecPlaces for a value is set to 2, two decimal places of accuracy will
always be shown, overriding the MinWidth specifier if necessary. If the
number of decimal places in the value exceeds the number of decimal places
specified, the value will be rounded. For values other than REAL, DecPlaces
will generate an error.

String Values and Formatting

The MinWidth value acts as the length display specifier for the string, and
will truncate the string if MinWidth is less than the length of the string value.
If MinWidth is larger than the sting length, spaces will be prepended to the
value.

Examples of Numeric Values and Write-WriteLn

INTEGER Values

In the following example, the value being formatted overrides the specified
value for MinWidth:

will write '23456' to the file.

theInt:=23456;

Write(theInt:3);
A-4 VectorScript Language Guide

Data Formatting with Write and WriteLn
A

When MinWidth exceeds the width of the formatted value, spaces are
prepended the value:

will write ' 23456' to the file.

REAL Values

In the following example, a combination of MinWidth and DecPlaces
values are used to format the value string. The value displays a total character
length (including the decimal point) of six characters, and displays two-place
decimal precision. The value is rounded to meet the specified display settings:

will write '789.13' to the file.
If the DecPlaces setting exceeds the precision of the value to be displayed,
zeroes will be appended to bring the value up to the DecPlaces setting.
MinWidth is overridden by both the value and the DecPlaces setting:

will write '789.128000' to the file.

Examples of String Values and Write-WriteLn

In the example, the MinWidth specifier is varied to display parts of the
overall string value:

will write 'This is' to the file.

will write ' This is a sample string' to the file.
Write('VectorScript':6);

will write 'Vector’ to the file.

theInt:=23456;

Write(theInt:7);

theReal:=789.128;

Write(theReal:6:2);

theReal:=789.128;

Write(theReal:2:6);

theString:='This is a sample string';

Write(theString:7);

theString:='This is a sample string';

Write(theString:25);
VectorScript Language Guide A-5

Numeric and Data Formats
Write('VectorScript':16);

will write ' VectorScript' to the file.
A-6 VectorScript Language Guide

BB

BSearch Criteria
In this Chapter:

• Search Criteria
Format

• Attribute Types

• Specialized
Searches

• Search Criteria
Tables
Search criteria are designed for use with VectorScripts'
criteria API and with worksheets to filter and locate objects
by the specified attribute values. Search criteria use the
attributes of VectorWorks objects (layer, class, color,
lineweight, etc...) as a means of selecting and manipulating
subsets of items within the document.

Search Criteria Format

Syntax

Search criteria in VectorScript are composed of two parts:
the search attribute type specifier and the search
value. The search attribute specifier indicates which
attribute will be used to filter objects in the document; the
search value specifies the value to be found and matched by
the search operation. For example, the search criteria term:

(C=’Edged’)

indicates that a search should be performed for any objects
whose class is Edged. In the criteria term, the C attribute
type indicates that the search should be performed on the
class attribute of objects in the document. The search value
Edged indicates what class will be a match in the search
operation.
The general syntax for search criteria terms is:

(<search attribute type> = <search value>)

Parentheses are traditionally used to enclose and indicate
individual search terms; they are not required.
VectorScript Language Guide B-1

Search Criteria
Multiple Search Terms

Multiple criteria terms may be specified in order to narrow the search
operation to a more specific subset of objects. Multiple search criteria are
created using the & operator to chain individual search criteria terms. In the
term

((L='New Construction') & (C='Phase 1'))

two search terms are combined to filter for a specific set of objects, in this
case any objects on the layer New Construction whose class is Phase 1.
To narrow the search even further, simply add additional search terms:

((L='New Construction') & (C='Phase 1') & (SEL=TRUE))

In the example, the selection status attribute type was added, so now only
selected objects in the Phase 1 class on layer New Construction will
match the search.

Multiple Search Values

It is also possible to filter for multiple match values using search criteria.
Multiple match values use the following syntax:

(<attribute type> IN [<search value>,<search value>,...])

When a search term is specified in this fashion, objects matching any value in
the comma delimited value list will be included in the list of objects matching
the search. For example:

(R IN ['Part Data','Subassembly Data','Assembly Data'])

A search using the above term will match any objects with an attached record
matching one of the records in the search list.

Attribute Types

Markers (AR)

The marker attribute type will search for the indicated marker style. The
search value should be one of the supported marker style flag selector values
(in a range of 0 – 27).
B-2 VectorScript Language Guide

Attribute Types
B

Class (C)

The class attribute type will search for objects assigned to the specified class.
The search value should be a STRING value which is up to 64 characters in
length (literals and variables are supported).

Fill Background (FB)

The fill background attribute type will search for objects having the specified
fill background. The search value should be a standard VectorWorks color
index value (which can be obtained with RGBToColorIndex()).

Fill Foreground (FF)

The fill foreground attribute type will search for objects having the specified
fill foreground. The search value should be a standard VectorWorks color
index value (which can be obtained with RGBToColorIndex()).

Fill Pattern (FP)

The fill pattern attribute type will search for objects having the specified fill
pattern. The search value should be the standard VectorWorks fill pattern
selector value (in a range of 0 – 71).

Layer (L)

The layer attribute type will search for objects on the specified layer. The
search value should be a STRING value which is up to 64 characters in length
(literals and variables are supported).

Line Weight (LW)

The line weight attribute specifier will search for objects which have the
indicated line weight. The search value should be an INTEGER value
specifying the line weight.

Pen Pattern/Linestyle (PP)

The pen pattern/linestyle attribute specifier will search for objects having the
indicated linestyle or pen pattern. The search value should be a standard
linestyle or pen pattern selector value.
VectorScript Language Guide B-3

Search Criteria
Object Name (N)

The object name attribute specifier will search for the object which is
assigned the specified object name. The search value should be a STRING
value which is up to 64 characters in length (literals and variables are
supported).

Attached Record (R)

The record attribute specifier will search for objects which have the indicated
record attached.
The record attribute specifier requires the use of the multiple criteria format to
specify the record name. For example, to search for objects having the Part
Data record attached, the search term would be:

(R IN ['Part Data'])

The record name must be a literal STRING value.

Object Type (T)

The object type attribute specifier will search for objects matching the
specified object type. The search value must be one of the predefined object
type selectors (see table at the end of this section for a complete listing).

Pen Background (PB)

The pen background attribute specifier will search for objects having the
specified pen background. The search value should be a standard
VectorWorks color index value (which can be obtained with
RGBToColorIndex()).

Pen Foreground (PF)

The pen foreground attribute specifier will search for objects having the
specified pen foreground. The search value should be a standard VectorWorks
color index value (which can be obtained with RGBToColorIndex()).
B-4 VectorScript Language Guide

Specialized Searches
B

Selection Status (SEL)

The selection status specifier will search for selected or deselected objects.
The search value is a BOOLEAN value indicating the selection state (TRUE for
selected, FALSE for deselected).

Symbol Name (S)

The symbol name attribute specifier will search for symbol instances based on
the specified symbol name. The search value should be a STRING value which
is up to 64 characters in length (literals and variables are supported).

Visibility (V)

The visibility attribute specifier will search for objects based on their
visibility status. The search value is a BOOLEAN value indicating the visibility
state (TRUE for visible, FALSE for invisible).

Specialized Searches

In addition to the standard attribute types available for use in search terms,
VectorScript also provides specialized search attribute types for additional
flexibility in searching a document.

Record Field Values

Record fields may be searched for specific matching values using a
specialized attribute type to query the field value. The syntax for querying
record fields is:

(<record name>.<field name>[< = | <> | > | >= | < | <= ><search value>])

The record and field names are STRING values and should be enclosed in
single quotes. Any one of the optional comparison operators can be used to
focus the search on a specific subset of items which have the attached record.
For example:

('Assembly Data'.'Base Cost' < 250.00)

will search for any items with the attached record whose base cost is less than
250.00 dollars.
VectorScript Language Guide B-5

Search Criteria
Search Symbol Instances (INSYMBOL)

The INSYMBOL attribute specifier will cause the search to enter any symbols
encountered and perform a search on the symbols' definition. For example,
suppose you are laying out a large office and wish to count the total number of
desk components that will need to be purchased. Your document contains a
mixture of individual desk and desk return symbols, plus symbols which are
comprised of a combination of the two desk components. A search using the
term

(S IN ['3660 Desk','3660 LH Return'])

will return an inaccurate count, as it does not include instances of those
symbols which are themselves inside another symbol. Adding the INSYMBOL
type specifier to the term:

((S IN ['3660 Desk','LH Return']) & (INSYMBOL))

will force the search to enter any symbols encountered and detect any nested
instances of the symbols in the search term.

Symbol Flip Status (ISFLIPPED)

The ISFLIPPED attribute specifier will check the flipped status of symbols or
other objects. For example, to perform a count of all flipped instances of a
particular symbol:

((S=’3680 Door’) & (ISFLIPPED))

will find only those instances of the symbol which have been flipped. The
ISFLIPPED specifier is useful for determining orientation of objects for
editing or related tasks.

All Objects (ALL)

Using the ALL attribute type specifier will select all the objects in the
document.
B-6 VectorScript Language Guide

Search Criteria Tables
B

Search Criteria Tables

The VectorScript criteria attribute specifiers are listed in the following table.

Attribute Type Type Specifier Example

Marker AR INTEGER selector value

Class C 64 character STRING

Fill Background FB Color index value

Fill Foreground FF Color index value

Fill Pattern FP INTEGER selector value

Layer L 64 character STRING

Line Weight LW INTEGER value

Pen Pattern/Linestyle PP INTEGER value

Object Name N 64 character STRING

Attached Record R 64 character STRING

Object Type T Type selector (see table)

Pen Background PB Color index value

Pen Foreground PF Color index value

Selected status SEL BOOLEAN value

Symbol Name S 64 character STRING

Visibility status V BOOLEAN value

Descend into symbols INSYMBOL n/a

Flipped status ISFLIPPED n/a

All objects ALL n/a

Object Type Type Selector Example

Line LINE T=LINE

Rectangle RECT T=RECT

Rounded Rectangle RRECT T=RRECT

Oval OVAL T=OVAL

Polygon POLY T=POLY

Polyline POLYLINE T=POLYLINE

Arc ARC T=ARC

Quarter Arc QARC T=QARC

Text TEXT T=TEXT
VectorScript Language Guide B-7

Search Criteria
2D Locus LOCUS T=LOCUS

3D Locus LOCUS3D T=LOCUS3D

Freehand FHAND T=FHAND

Dimension DIMENSION T=DIMENSION

Symbol SYMBOL T=SYMBOL

Group GROUP T=GROUP

Extrude XTRD T=XTRD

Multiple Extrude MXTRD T=MXTRD

Sweep SWEEP T=SWEEP

Mesh MESH T=MESH

3D Polygon POLY3D T=POLY3D

Cone, Sphere, Pyramid SOLID T=SOLID

CSG Solid CSGSOLID T=CSGSOLID

Wall WALL T=WALL

Round Wall ROUNDWALL T=ROUNDWALL

Roof ROOF T=ROOF

Roof Element ROOFELEMENT T=ROOFELEMENT

Roof Face, Floor, Column SLAB T=SLAB

Worksheet SPRDSHEET T=SPRDSHEET

Layer Link LAYERLINK T=LAYERLINK

PICT Image PICT T=PICT

Bitmap Image BITMAP T=BITMAP

Plug-in Object PLUGINOBJECT T=PLUGINOBJECT

Object Type Type Selector Example
B-8 VectorScript Language Guide

CC

CCompiler Directives
In this Chapter:

• {$INCLUDE}

• {$DEBUG}

• {$NAMES}

• {$STRICT}
VectorScript supports the following compiler directives for
controlling how scripts are compiled and executed.

{$INCLUDE}

The include directive instructs the compiler to insert source
code from an external file at the position of the include
directive statement. The syntax for an include directive is:

{$INCLUDE <file path>}

The path to the file containing VectorScript source code
may be either a fully specified or partial file path.
Macintosh style path delimiters (:), or Windows style path
delimiters (\) are supported. Windows style delimiters are
recommended for scripts which may be used in a
cross-platform environment to ensure compatibility on all
platforms.
Example: Macintosh-style include directive

{$INCLUDE MyHD:VectorWorks:Projects:VS:mycode:math.vss}

Example: Windows-style include directive

{$INCLUDE MyHD\VectorWorks\Projects\VS\mycode\math.vss}

Include files specified without any path information are
assumed to reside in a predefined default path relative to
the script. For document scripts and scripts run from text
files, the default path is the location of the VectorWorks
application. For plug-ins, the default path is assumed to be
the Plug-ins folder.
Include statements may also be chained by specifying
include directives in other include files. Chaining include
directives should be used with care, as it can cause file
dependencies which may cause scripts to fail under certain
circumstances.
VectorScript Language Guide C-1

Compiler Directives
Caution should also be exercised when positioning include directives in your
scripts to avoid calling functions before they are defined within the script.

{$DEBUG}

The debug directive instructs the compiler to launch the VectorScript
debugger when compiling and executing the script. The debugger may then be
used to observe and control script execution during script development. The
syntax for the debug directive is:

{$DEBUG}

The directive may be positioned anywhere within the main block of the script
to invoke the debugger.
Details on using the debugger may be found in “The VectorScript Debugger”
on page 17-10.

{$NAMES}

The names directive instructs the compiler to recognize only the identifiers
which are valid for the VectorWorks version specified in the compiler
directive. Identifiers screened by this directive include procedure, function,
and constant identifiers. The syntax for the names directive is:

{$NAMES <version number>}

Identifiers which are not defined for the specified version of the product will
generate a VectorScript error. The names directive is intended for use in
testing compatibility of scripts with different versions of VectorWorks.
Example: Names directive

{$NAMES 8}

In the example, the VectorScript compiler will recognize only those identifiers
valid for VectorWorks 8. Any identifier names not supported by the compiler
(such as new functions in subsequent versions) will return an error, and should
not be used in scripts that must be compatible with the version specified in the
directive.
C-2 VectorScript Language Guide

{$STRICT}
C

{$STRICT}

The strict directive instructs the compiler to recognize observe syntax and
semantic rules which are valid for the VectorWorks version specified in the
compiler directive. The syntax for the strict directive is:

{$STRICT <version number>}

Syntax which is not valid for the specified version will generate a
VectorScript error. The strict directive is intended for use in testing
compatibility of scripts with different versions of VectorWorks.
Example: Strict directive

{$STRICT 7}

In the example, the VectorScript compiler will recognize only syntax
conventions valid for MiniCAD 7. Any new syntax conventions not valid in
this version (such as dynamic arrays or structures) will return an error, and
should not be used in scripts that must be compatible with the version
specified in the directive.
VectorScript Language Guide C-3

Compiler Directives
C-4 VectorScript Language Guide

DD

DObject Types
In this Chapter:

• Standard Types

Standard Types

The numeric types in the table below are useful for
identifying what type of object is referenced by a handle.
The function GetType(h) will return one of these numeric
types. The Criteria values in the table below are used in
search statements. They are used along with the criteria T=
to search for objects of a specific type. For example, the
following statement will count the number of rectangles in
the active document: Message(Count(T=RECT));

Object Type Criteria

Line 2 LINE

Rectangle 3 RECT

Oval 4 OVAL

Polygon 5 POLY

Arc 6 ARC

Freehand 8 FHAND

3D Locus 9 LOCUS3D

Text 10 TEXT

Group 11 GROUP

Quarter Arc 12 QARC

Rounded rectangle 13 RRECT

Bitmap Image 14 BITMAP

Symbol in document 15 SYMBOL

Symbol definition 16

2D Locus 17 LOCUS

Worksheet 18 SPRDSHEET

Polyline 21 POLYLINE

PICT Image 22 PICT
VectorScript Language Guide D-1

Object Types
Extrude 24 XTRD

3D Polygon 25 POLY3D

Layer link 29 LAYERLINK

Layer 31

Sweep 34 SWEEP

Multiple extrude 38 MXTRD

Mesh 40 MESH

Mesh vertex 41

Record definition (format) 47

Record 48

Document script 1 49

Script palette 1 51

Worksheet container 56

Dimension 63 DIMENSION

Hatch definition 1 66

Wall 68 WALL

Column, floor, roof face 71 SLAB

Light 81

Roof edge 82

Roof object 83 ROOF

CSG solid (addition,
subtraction)

84 CSGSOLID

Plug-in object 86 PLUGINOBJECT

Roof element 87 ROOFELEMENT

Round walls 89 ROUNDWALL

Symbol folder 92

Texture 93

Class definition 1 94

Solid (cone, sphere, ...) 95 SOLID

Texture definition (material) 97

NURBS curve 111

NURBS surface 113

Image fill definition 1 119

Object Type Criteria
D-2 VectorScript Language Guide

Standard Types
D

 Note:
1 These special objects are not directly displayed in the document. They
may contain definition information used by other objects or features.

Gradient fill definition 1 120

Fill space 1 121

Object Type Criteria
VectorScript Language Guide D-3

Object Types
D-4 VectorScript Language Guide

EE

ESelector Tables
In this Chapter:

• Fill Patterns

• Linestyles

• Markers

• SetTool - CallTool
Selectors

• Record Field Data
Type Selectors

• Record Field
Display Style
Selectors

• Dimension Style
Selectors
Fill Patterns

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71
VectorScript Language Guide E-1

Selector Tables
Linestyles

Markers

Style Style Selector Example

Short Dash -1

Medium Dash -2

Long Dash -3

Very Long Dash -4

Dotted -5

Dash-Dot -6

Dash-Dash-Dot -7

Dash-Dot-Dot -8

Centerline -9

Break Line -10

Marker Type Marker Location Selector

Solid Arrow None 0

Start 1

End 2

Both 3

Hollow Arrow None 4

Start 5

End 6
E-2 VectorScript Language Guide

Markers
E

Both 7

Open Arrow None 8

Start 9

End 10

Both 11

Dot None 12

Start 13

End 14

Both 15

Circle None 16

Start 17

End 18

Both 19

Slash None 20

Start 21

End 22

Both 23

Cross None 24

Start 25

End 26

Both 27

Marker Type Marker Location Selector
VectorScript Language Guide E-3

Selector Tables
SetTool - CallTool Selectors
Tool Selector Tool Selector

2D Selection Cursor -240 3D View Rotate -301

3D Selection Cursor -349 Walkthrough -302

Pan -241 Flyover -303

Zoom In -242 Translate Working Plane -304

Zoom Out -243 Rotate Working Plane -305

Text -200 Set Working Plane -306

Line -201 Move Working Plane -307

Arc -202 3D Reshape -308

Rectangle -203 3D Symbol -309

Polyline -204 Extrude -310

Oval -205 Slab -311

Fillet -206 Align Plane -312

2D Polygon -207 3D Polygon -313

Wall -208 3D Mirror -314

2D Symbol -209 3D Rotate -315

Constrained Dimension -210 3D Locus -316

Unconstrained Dimension -211 Create Light -317

Radial-Diam Dimension -212 Round Wall -318

Angular Dimension -213 Create Sphere -319

2D Reshape -214 Create Hemisphere -320

2D Rotate -215 Create Cone -321

Double Line -216 Wall Join -322

Rounded Rectangle -217 Wall Heal -323

Double Line Polygon -218 Render Bitmap -324

Chamfer -219 NURBS Curve -325

Freehand -220 Curve Split -326

2D Locus -221 Connect/Combine -327

2D Mirror -222 NURBS Circle -328

Leader -223 NURBS Arc -329

Rotated Rectangle -224 Extract Curve -342

Regular Polygon -225 Blend Edge -343

Clipping -226 Loft -344
E-4 VectorScript Language Guide

Record Field Data Type Selectors
E

Record Field Data Type Selectors

Record Field Display Style Selectors

Quarter Arc -227 Project and Trim -345

Center Mark -228 Extract Surface -346

Number Stamp -229 Shell Solid -347

3D View Translate -300 Create Contours -348

Tool Selector Tool Selector

Field Data Type Selector

INTEGER 1

BOOLEAN 2

Number - General 3

Text 4

Number - Decimal 5

Number - Decimal with commas 6

Number - Scientific 7

Number - Fractional 8

Dimension 9

Angle 10

Date-Time 11

Field Type Display Style Style Selector

BOOLEAN TRUE 1

FALSE 2

Number - Decimal No. of decimal places 0 to 9

Number - Decimal with commas No. of decimal places 0 to 9

Number - Scientific No. of decimal places 0 to 9

Number - Fractional Rounding value 2,4,8,16,32...

Angle Degrees 1

Degrees-Minutes 2
VectorScript Language Guide E-5

Selector Tables
Dimension Style Selectors

Dimension style selectors control the dimension display options for the
VectorScript API functions LinearDim, CircularDim, and AngularDim.
Display selectors are additive; multiple options can be combined by adding
the selector values and using the result in the appropriate parameter. For
example,

LinearDim(-2",-2",1",2",-3",0,769,1025,0);

will create a constrained horizontal linear dimension with starting and ending
witness lines, arrows using the calculated default location, and text which will
always display horizontally.

Degrees-Minutes-Seconds 3

Date-Time MDY 1

MDY HMM 2

DMY 3

YMD 4

YMD HMM 5

D-MMM-Y 6

D-MMM 7

MMM-Y 8

H MM 9

H MM S 10

H MM(AM/PM) 11

H MM S(AM/PM) 12

Field Type Display Style Style Selector
E-6 VectorScript Language Guide

Dimension Style Selectors
E

Linear Dimension

Circular Dimension

Parameter Style Selector

dimType Constrained Horizontal 0

Constrained Vertical 1

Horizontal Ordinate 2

Vertical Ordinate 3

Unconstrained 4

arroFlag Use calculated position 1

Dimension line inside/outside 2

Start witness on/off 256

End witness on/off 512

textFlag Use calculated position 1

Text inside/outside 2

Text above dimension line 256

Text aligned to dimension line 512

Force text horizontal 1024

Parameter Style Selector

dimType Diameter dimension 0

Other circular dimension 1

arroFlag Use calculated position 1

Dimension line inside/outside 2

Start witness on/off 256

End witness on/off 512

textFlag Use calculated position 1

Text inside/outside 2

Text above dimension line 256

Text aligned to dimension line 512

Force text horizontal 1024
VectorScript Language Guide E-7

Selector Tables
Angular Dimension
Parameter Style Selector

arroFlag Use calculated position 1

Dimension line inside/outside 2

Start witness on/off 256

End witness on/off 512

Reference Angle 1024

textFlag Use calculated position 1

Text inside/outside 2

Text above dimension line 256

Text aligned to dimension line 512

Force text horizontal 1024
E-8 VectorScript Language Guide

FF

FPreference Selectors
In this Chapter:

• Using Preference
Selectors

• Preference
Selector Value
Tables
Using Preference Selectors

VectorScript provides a group of API function calls for
obtaining and setting document and application
preferences. The GetPref and SetPref suite of API
function calls use a selector index value to obtain or set the
desired preference value. For example, to determine
whether the preference for displaying other objects while in
groups is active, the function:

showOthers:= GetPref(14);

will return the status of this setting. Setting the preference
can be performed by using the corresponding SetPref call;
for example, the function call:

SetPref(14,TRUE);

will cause other objects to be displayed while in edit group
mode.
Non-boolean setting values can be obtained by using other
functions within the group of functions. For example, to
determine the 2D conversion resolution, using the function:

convRes:= GetPrefInt(55);

will return the conversion value. To set the value, use the
corresponding function call:

SetPrefInt(55,32);

Preference Selector Value Tables

The following tables list selector values for various
VectorWorks application and document preferences.
VectorScript Language Guide F-1

Preference Selectors
General Application/Document Preferences
Preference Selector Preference Value Function

Click-Drag Mode 0 TRUE or FALSE Pref

Offset Duplicates 1 TRUE or FALSE Pref

Full Screen Cursor 2 TRUE or FALSE Pref

Show Screen Hints 3 TRUE or FALSE Pref

Floating Datum 4 TRUE or FALSE Pref

Snap To Loci 5 TRUE or FALSE Pref

Show Rulers 6 TRUE or FALSE Pref

Show Scroll Bars 7 TRUE or FALSE Pref

No Fill Behind Text 8 TRUE or FALSE Pref

Zoom Line Thickness 9 TRUE or FALSE Pref

Black and White Only 10 TRUE or FALSE Pref

Use Layer Colors 11 TRUE or FALSE Pref

Log Time in Program 12 TRUE or FALSE Pref

Adjust Flipped Text 13 TRUE or FALSE Pref

Show Other Objects While In Group 14 TRUE or FALSE Pref

Show 3D Axis Labels 15 TRUE or FALSE Pref

Use Black Background 16 TRUE or FALSE Pref

Use Eight Selection Handles 17 TRUE or FALSE Pref

Use Sound 18 TRUE or FALSE Pref

Issue Undo Warnings 19 TRUE or FALSE Pref

Opaque SmartCursor 20 TRUE or FALSE Pref

Stop VectorScript on Warnings 21 TRUE or FALSE Pref

Left Palette Margin 22 TRUE or FALSE Pref

Right Palette Margin 23 TRUE or FALSE Pref

Use Save Reminder 24 TRUE or FALSE Pref

Show Parametric Constraints 25 TRUE or FALSE Pref

Undo View Changes 26 1 (never)
2 (combine all)
3 (combine similar)
4 (combine none)

PrefInt

Display Minor Alerts on Mode Bar 27 TRUE or FALSE Pref

Associate Dimensions 28 TRUE or FALSE Pref

Spell Check Capitalized Words 29 TRUE or FALSE Pref
F-2 VectorScript Language Guide

Preference Selector Value Tables
F

Spell Check Words in ALL CAPS 30 TRUE or FALSE Pref

Spell Check Mixed Case Words 31 TRUE or FALSE Pref

Spell Check Words With Numbers 32 TRUE or FALSE Pref

Auto Join Walls 33 TRUE or FALSE Pref

Show Page Breaks 34 TRUE or FALSE Pref

Show Grid 35 TRUE or FALSE Pref

Print Grid 36 TRUE or FALSE Pref

Snap To Grid 37 TRUE or FALSE Pref

Snap To Object 38 TRUE or FALSE Pref

Save By Time 39 TRUE or FALSE Pref

Save Confirm 40 TRUE or FALSE Pref

Save To Backup 41 TRUE or FALSE Pref

Extended Autoscroll 42 TRUE or FALSE Pref

Palette Docking 43 TRUE or FALSE Pref

Dimension Slash Thickness Unit 50 3 (points)
2 (mils)
1 (mm)

PrefInt

3D Rotation Responsiveness 52 1(detailed)..5(responsive) PrefInt

Custom Constraint Angle 53 REAL (degrees) PrefReal

Snap Radius 54 INTEGER value PrefInt

2D Conversion Resolution 55 INTEGER value PrefInt

3D Conversion Resolution 56 INTEGER value PrefInt

Current Document Text Size 57 REAL PrefReal

Current Document Text Style 58 0 (Plain)
1 (Bold)
2 (Italic)
4 (Underline)
8 (Outline - Mac only)
16 (Shadow - Mac only)

PrefInt

Maximum Number of Undos 59 INTEGER PrefInt

Save Interval 60 no. of minutes PrefInt

Display Light Objects 61 0(always)
1(wireframe)
2(never)

PrefInt

Retain QuickDraw 3D Model 62 1(never)...5(always) PrefInt

Preference Selector Preference Value Function
VectorScript Language Guide F-3

Preference Selectors
Rotated Text Display 63 0(box)
1(normal)
2(high)

PrefInt

Bitmap Display 64 0(box)
1(low res)
2(hi res)

PrefInt

Dimension Slash Thickness 65 INTEGER value (mils) PrefInt

Hidden Line Dash Style 66 INTEGER selector PrefInt

Hidden Line Shading 67 1(dark)...4(light) PrefInt

Page Origin X 68 REAL PrefReal

Page Origin Y 69 REAL PrefReal

Page Scaling Factor 70 REAL PrefReal

Dimension Standard 71 0 (Arch)
1 (ASME)
2 (BSI)
3 (DIN)
4 (ISO)
5 (JIS)
6 (SIA)
7 (ASME Dual Side-by-Side)
8 (ASME Dual Stacked)

PrefInt

Defacet Angle 72 REAL (0-90 degrees) PrefReal

Grid Angle 73 REAL PrefReal

Move Object on Grid Keys 74 1 (arrow)
2 (Cmd+arrow)
3 (Shift+arrow)
4 (Shift+Cmd+arrow)

PrefInt

Nudge Object Keys 75 1 (arrow)
2 (Cmd+arrow)
3 (Shift+arrow)
4 (Shift+Cmd+arrow)

PrefInt

Pan Drawing Keys 76 1 (arrow)
2 (Cmd+arrow)
3 (Shift+arrow)
4 (Shift+Cmd+arrow)

PrefInt

Switch Active Layer/Class Keys 77 1 (arrow)
2 (Cmd+arrow)
3 (Shift+arrow)
4 (Shift+Cmd+arrow)

PrefInt

Text Font Name 100 STRING PrefString

Preference Selector Preference Value Function
F-4 VectorScript Language Guide

Preference Selector Value Tables
F

Primary Units

Angular Precision 120 INTERGER PrefInt

Angular Unit 121 0 (degrees)
1 (radians)
2 (gradians)

PrefInt

Preference Selector Preference Value Function

Preference Selector Preference Value Function

Unit Fraction 150 REAL value PrefReal

Units Per Inch 152 REAL value PrefReal

Unit Style Name 153 64 character STRING PrefString

Unit Mark 154 STRING value PrefString

SUnit Mark 155 STRING value PrefString

SUnit Divider 156 STRING value PrefString

SMultiplier 157 INTEGER value PrefInt

Square Unit Mark 158 STRING value PrefString

Square Unit Divisor 159 LONGINT PrefLongint

Cube Unit Mark 160 STRING value PrefString

Cube Unit Divisor 161 LONGINT PrefLongint

Display Fraction 162 LONGINT PrefLongint

Show Unit Mark 163 TRUE or FALSE Pref

Display Leading Zero 164 TRUE or FALSE Pref

Display Trailing Zeroes 165 TRUE or FALSE Pref

Use Minimum Units 166 TRUE or FALSE Pref

Use Custom Units 167 TRUE or FALSE Pref

Show Decimals as Fractions 168 TRUE or FALSE Pref

Dimension Precision 169 LONGINT PrefLongint

Predefined Units Style 170 0 (Custom)
1 (Feet & Inches)
2 (Feet)
3 (Inches)
4 (Millimeters)
5 (Centimeters)
6 (Meters)

PrefInt

Fractional Display Precision 171 LONGINT value PrefLongInt

Fractional Dimension Precision 172 LONGINT value PrefLongInt
VectorScript Language Guide F-5

Preference Selectors
Secondary Units

Metric Unit Flag 173 TRUE or FALSE Pref

Angular Unit 174 0 (degrees)
1 (radians)
2 (gradians)

PrefInt

Round Fraction to Decimal 175 TRUE or FALSE Pref

Preference Selector Preference Value Function

Preference Selector Preference Value Function

Unit Fraction 200 REAL value PrefReal

Units Per Inch 202 REAL value PrefReal

Unit Style Name 203 64 character STRING PrefString

Unit Mark 204 STRING value PrefString

SUnit Mark 205 STRING value PrefString

SUnit Divider 206 STRING value PrefString

SMultiplier 207 INTEGER value PrefInt

Square Unit Mark 208 STRING value PrefString

Square Unit Divisor 209 LONGINT PrefLongint

Cube Unit Mark 210 STRING value PrefString

Cube Unit Divisor 211 LONGINT PrefLongint

Display Fraction 212 LONGINT PrefLongint

Show Unit Mark 213 TRUE or FALSE Pref

Display Leading Zero 214 TRUE or FALSE Pref

Display Trailing Zeroes 215 TRUE or FALSE Pref

Use Minimum Units 216 TRUE or FALSE Pref

Use Custom Units 217 TRUE or FALSE Pref

Show Decimals as Fractions 218 TRUE or FALSE Pref

Dimension Precision 219 LONGINT PrefLongint

Predefined Units Style 220 0 (Custom)
1 (Feet & Inches)
2 (Feet)
3 (Inches)
4 (Millimeters)
5 (Centimeters)
6 (Meters)

PrefInt

Fractional Display Precision 221 LONGINT value PrefLongInt
F-6 VectorScript Language Guide

Preference Selector Value Tables
F

DXF Preference Selectors

Fractional Dimension Precision 222 LONGINT value PrefLongInt

Metric Unit Flag 223 TRUE or FALSE Pref

Angular Unit 224 0 (degrees)
1 (radians)
2 (gradians)

PrefInt

Round Fraction to Decimal 225 TRUE or FALSE Pref

Preference Selector Preference Value Function

Preference Selector Preference Data Type Function

Auto Units 300 TRUE or FALSE Pref

Units 301 INTEGER PrefInt

DXF Units Per Inch 302 REAL PrefReal

Auto Model Space Scale 303 TRUE or FALSE Pref

Model Space Scale 304 REAL PrefReal

2D 3D Import Handling 305 INTEGER PrefInt

Map Layers to Class 306 TRUE or FALSE Pref

Convert MLines to Walls 307 TRUE or FALSE Pref

Convert Rays and XLines 308 TRUE or FALSE Pref

Scale Dash Lengths 309 TRUE or False Pref

Dash Length Scale 310 REAL PrefReal

Auto Block Attribute Handling 311 TRUE or FALSE Pref

Block Attribute Handling 312 INTEGER PrefInt

Auto Point Handling 313 TRUE or FALSE Pref

Convert Points to Loci 314 TRUE or FALSE Pref

Point Symbols are Guides 315 TRUE or FALSE Pref

Map Colors to Line Weights 316 TRUE or FALSE Pref

Set Line Colors Black 317 TRUE or FALSE Pref

Paper Space Units 318 INTEGER PrefInt

Auto Scale Dash Lengths 319 TRUE or FALSE Pref

Group Record Fields 320 TRUE or FALSE Pref

Auto Line Weight Handling 321 TRUE or FALSE Pref
VectorScript Language Guide F-7

Preference Selectors
Gradient and Image Fill Preference Selectors

Miscellaneous Preference Selectors

Preference Selector Preference Data Type Function

Default Gradient Fill 508 LONGINT PrefLongint

Default Gradient Fill Angle 512 REAL PrefReal

Default Gradient Fill Repeat 513 TRUE or FALSE Pref

Default Gradient Fill Geometric
Type

515 INTEGER PrefInt

Default Gradient Fill Mirror 516 TRUE or FALSE Pref

Default Gradient Fill Maintain
Aspect Ratio

517 TRUE or FALSE Pref

Default Image Fill 518 LONGINT PrefLongint

Default Image Fill I-Length 521 REAL PrefReal

Default Image Fill J-Length 522 REAL PrefReal

Default Image Fill Angle 523 REAL PrefReal

Default Image Fill Repeat 524 TRUE or FALSE Pref

Default Image Fill Mirror 526 TRUE or FALSE Pref

Default Image Fill Flip 527 TRUE or FALSE Pref

Default Fill Style 528 LONGINT PrefLongint

Default Fill Type 529 INTEGER PrefInt

Default Hatch Fill 530 LONGINT PrefLongint

Preference Selector Preference Data Type Function

RenderWorks Enabled 240 TRUE or FALSE GetPref

Disable RenderWorks 241 TRUE or FALSE Pref

Don’t Cache Plug-in Scripts 407 TRUE or FALSE Pref

Window Zoom Factor 500 REAL PrefReal
F-8 VectorScript Language Guide

GG

GObject Selectors
In this Chapter:

• Object Variable
Selectors

• Setting Selector
Value Tables
Object Variable Selectors

VectorScript provides a group of API functions for
obtaining and modifying selected object settings. The
GetObjectVariable and SetObjectVariable API
function calls use a selector index value to obtain or set the
desired object setting value.

For example, to determine whether a light casts shadows,
the statement:

b:= GetObjectVariableBoolean(h,53);

will return the shadow casting status of the referenced light
object and assign it to the variable b. To set the shadow
casting status, the statement:

SetObjectVariableBoolean(h,FALSE);

would turn shadow casting off. To get the type of the same
light, the statement:

t:= GetObjectVariableInt(h,55);

will return the type of the light and assign it to the variable.
To set the light type, the statement:

SetObjectVariableInt(h,55,2);

will set the referenced light object to be a point light
source.

Setting Selector Value Tables

The following tables list the setting selector values for
various VectorWorks object types.
VectorScript Language Guide G-1

Object Selectors
Dimension
Object Setting Selector Setting Value Function

Dimension Standard 0 0 (Arch)
1 (ASME)
2 (BSI)
3 (DIN)
4 (ISO)
5 (JIS)
6 (SIA)
7 (ASME Dual Side-by-Side)
8 (ASME Dual Stacked)

ObjectVariableInt

Dimension Text Rotation 1 0(aligned)
1(horizontal only)
2(horizontal-vertical)

ObjectVariableInt

Dim Text Offset Above Line 2 REAL value ObjectVariableReal

Arrows Inside 3 TRUE or FALSE ObjectVariableBoolean

Dim Text Offset 4 REAL value ObjectVariableReal

Use Text Box (Primary Value) 5 TRUE or FALSE ObjectVariableBoolean

Show Primary Dimension Text 6 TRUE or FALSE ObjectVariableBoolean

Display Starting Witness Line 7 TRUE or FALSE ObjectVariableBoolean

Display Ending Witness Line 8 TRUE or FALSE ObjectVariableBoolean

Leader Text (Primary) 9 31 character STRING value ObjectVariableString

Trailer Text (Primary) 10 31 character STRING value ObjectVariableString

Dimension Tolerancing 11 0(no tolerance)
1(single tolerance)
2(double tolerance)
3(limit tolerance)

ObjectVariableInt

Dimension Offset 15 REAL value ObjectVariableReal

Dimension Text Font Size 17 in point size ObjectVariableInt

Dimension Text Font Style 19 0 (Plain)
1 (Bold)
2 (Italic)
4 (Underline)
8 (Outline [Mac only])
16 (Shadow [Mac only])

ObjectVariableInt

Dimension Precision (Primary) 20 INTEGER selector value ObjectVariableInt

Dimension Precision (Secondary) 21 INTEGER selector value ObjectVariableInt

Use Text Box (Secondary) 22 TRUE or FALSE ObjectVariableBoolean

Show Secondary Dimension Text 23 TRUE or FALSE ObjectVariableBoolean
G-2 VectorScript Language Guide

Setting Selector Value Tables
G

Lights

Leader Text (Secondary) 24 31 character STRING value ObjectVariableString

Trailer Text (Secondary) 25 31 character STRING value ObjectVariableString

Dimension Type 26 0 (Constrained)
1 (Unconstrained)
2 (Ordinate)
3 (Radial)
4 (Diameter)
5 (Angular)

ObjectVariableInt

Dimension Standard Name 27 STRING value ObjectVariableString

Dimension Font ID 28 Font ID ObjectVariableInt

Calculate Dim Text Position 29 TRUE or FALSE ObjectVariableBoolean

Force Dim Text Inside 30 TRUE or FALSE ObjectVariableBoolean

Angle is Reference 31 TRUE or FALSE ObjectVariableBoolean

Show only Primary 32 TRUE or FALSE ObjectVariableBoolean

Show only Secondary 33 TRUE or FALSE ObjectVariableBoolean

Top Tolerance Value 34 REAL value ObjectVariableReal

Bottom Tolerance Value 35 REAL value ObjectVariableReal

Top Tolerance String 36 STRING ObjectVariableString

Bottom Tolerance String 37 STRING ObjectVariableString

Use Tolerance Strings 38 TRUE or FALSE ObjectVariableBoolean

Flip Text 39 TRUE or FALSE ObjectVariableBoolean

Object Setting Selector Setting Value Function

Object Setting Selector Setting Value Function

Light On 50 TRUE or FALSE ObjectVariableBoolean

Brightness 51 REAL (percentage) ObjectVariableReal

Shadow Casting On 53 TRUE or FALSE ObjectVariableBoolean

Light Type 55 1(Directional)
2(Point)
3(Spotlight)

ObjectVariableInt

Light Pan Angle 57 REAL value ObjectVariableReal

Light Tilt Angle 58 REAL value ObjectVariableReal

Distance Falloff Type 59 0 (None)
1 (Smooth)
2 (Sharp)

ObjectVariableInt
VectorScript Language Guide G-3

Object Selectors
Symbol/Symbol Definitions

Roof/Floors/Columns

Angular Falloff Type 60 0 (none)
1 (Normal)
2 (Smooth)
3 (Sharp)

ObjectVariableInt

Light Spread Angle 61 REAL value ObjectVariableReal

Beam Angle 62 REAL value ObjectVariableReal

Object Setting Selector Setting Value Function

Object Setting Selector Setting Value Function

Symbol Light Multiplier 100 REAL value ObjectVariableReal

Symbol Insert Mode 125 0 (On center of wall)
1 (On edge of wall)

ObjectVariableInt

Symbol Break Mode 126 1 (Full break)
2 (Full break no caps)
3 (Half break)
4 (no break)

ObjectVariableInt

Insert As Group 127 TRUE or FALSE ObjectVariableBoolean

Object Setting Selector Setting Value Function

Slab Thickness 170 REAL value ObjectVariableReal

Slab Height 171 REAL value1 ObjectVariableReal

Slab Type 172 1 (Roof)

2 (Floor)

3 (Column)

ObjectVariableInt

Roof Rise 178 REAL value2 ObjectVariableReal

Roof Run 179 REAL value2 ObjectVariableReal

Roof Edge Miter Type 180 1 (Vertical)

2 (Horizontal)

3 (Compound)

ObjectVariableInt

Double Miter Ratio Value 181 REAL value3 ObjectVariableReal
G-4 VectorScript Language Guide

Setting Selector Value Tables
G

Notes:
1 Height is the bottom of the slab for floors and columns, elevation of the
roof axis for roofs.
2 Roof only.
3 A value between 0 and 1 indicating the percentage of the miter which is
vertical.

Layers

Layer Link

Walls/Wall Cavities

Object Setting Selector Setting Value Function

Layer Ambient Status 150 TRUE or FALSE ObjectVariableBoolean

Layer Ambient Brightness 151 REAL value ObjectVariableReal

Layer Visibility 153 -1 (Invisible)
 0 (Normal)
 2 (Grayed)

ObjectVariableInt

Object Setting Selector Setting Value Function

Source Layer Name 160 STRING value ObjectVariableString

Projects 2D Objects 161 TRUE or FALSE ObjectVariableBoolean

Object Setting Selector Setting Value Function

Number of Cavities 199 INTEGER value1 ObjectVariableInt

Cavity Left Offset 200 REAL value2 ObjectVariableReal

Cavity Right Offset 220 REAL value2 ObjectVariableReal

Cavity is Pair 240 TRUE or FALSE ObjectVariableBoolean

Cavity Fill Pattern 260 LONGINT index (0-71)2 ObjectVariableLongint

Cavity Pen Weight 280 INTEGER value (mils)2 ObjectVariableInt

Cavity Pen Style 300 INTEGER index2 ObjectVariableInt

Counterclockwise Round Wall 570 TRUE or FALSE ObjectVariableBoolean

Main Cavity Index 690 INTEGER ObjectVariableInt
VectorScript Language Guide G-5

Object Selectors
Notes:
1 Pass NIL to access default cavity values.
2 To access different cavities within a wall, add the cavity index to the
selector value. For example, to access the right offset of cavity 6, specify
226 (220 + 6).

Plug-in Objects

2D/3D Status

Worksheets

Object Setting Selector Setting Value Function

Insertion Mode 123 0 (On center of wall)
1 (On edge of wall)

ObjectVariableInt

Break Mode 124 1 (Full break)
2 (Full break no caps)
3 (Half break)
4 (no break)

ObjectVariableInt

Font Style Enabled 800 TRUE or FALSE ObjectVariableBoolean

Object Setting Selector Setting Value Function

Object Is 3D 650 TRUE or FALSE (read-only) ObjectVariableBoolean

Object Is 2D 651 TRUE or FALSE (read-only) ObjectVariableBoolean

Object Setting Selector Setting Value Function

Worksheet Header 80 STRING value ObjectVariableString

Worksheet Footer 81 STRING value ObjectVariableString

Show Database Headers 82 TRUE or FALSE ObjectVariableBoolean

Show Gridlines 83 TRUE or FALSE ObjectVariableBoolean

Show Tabs 84 TRUE or FALSE ObjectVariableBoolean

Auto-Recalculate 85 TRUE or FALSE ObjectVariableBoolean

Default Font Index 86 INTEGER value ObjectVariableInt

Default Font Size 87 INTEGER value ObjectVariableInt

Top Print Margin 88 REAL value ObjectVariableReal

Left Print Margin 89 REAL value ObjectVariableReal
G-6 VectorScript Language Guide

Setting Selector Value Tables
G

Textures

Notes:
1 Sets whether multiple textures can be applied to object (two for roof,
three for walls).
2 Valid for sphere texture space only.
3 Valid for extrudes and sweeps only.
4 Index of multi-texturable object component.

Bottom Print Margin 90 REAL value ObjectVariableReal

Right Print Margin 91 REAL value ObjectVariableReal

Object Setting Selector Setting Value Function

Object Setting Selector Data Type Function

Texturable Object 500 TRUE or FALSE (read-only) Get ObjectVariableBoolean

Expanded Material Set 501 TRUE or FALSE1 ObjectVariableBoolean

Material Size 510 REAL (inches) ObjectVariableReal

Texture Bitmap Feature Size 523 REAL value (in inches) ObjectVariableReal

Texture Bitmap Horizontal Repeat 524 TRUE or FALSE ObjectVariableBoolean

Texture Bitmap Vertical Repeat 525 TRUE or FALSE ObjectVariableBoolean

Paint Width 530 LONGINT (pixels) ObjectVariableLongint

Paint Height 531 LONGINT (pixels) ObjectVariableLongint

Texture Space Type 540 0 (Plane)
1 (Sphere)
2 (Cylinder)
3 (Perimeter Algorithmic)
4 (Shader)

ObjectVariableInt

Texture Space Scale 543 ObjectVariableInt

Texture Space Rotation 544 REAL value (in radians) ObjectVariableReal

Texture Space Radius 545 REAL value2 ObjectVariableReal

Texture Space Use Start Cap 546 TRUE or FALSE3 ObjectVariableBoolean

Texture Space Use End Cap 547 TRUE or FALSE3 ObjectVariableBoolean

Texture Space Part ID 548 INTEGER index4 ObjectVariableInt
VectorScript Language Guide G-7

Object Selectors
Gradient and Image Fills

Hatches

Misc.

Object Settings Selector Data Type Function

Fill X Offset 70 REAL ObjectVariableReal

Fill Y Offset 71 REAL ObjectVariableReal

Fill I-Axis Length 72 REAL ObjectVariableReal

Fill J-Axis Length 73 REAL ObjectVariableReal

Fill Angle 74 REAL ObjectVariableReal

Fill Repeat 75 TRUE or FALSE ObjectVariableBoolean

Fill Mirror 76 TRUE or FALSE ObjectVariableBoolean

Image Flip 77 TRUE or FALSE ObjectVariableBoolean

Gradient Geometry Type 78 LONGINT ObjectVariableLongint

Image Aspect Ratio 79 TRUE or FALSE ObjectVariableBoolean

Object Settings Selector Data Type Function

Number of Levels 660 INTEGER GetObjectVariableInt

Is Transparent 661 TRUE or FALSE ObjectVariableBoolean

Has Page Units 662 TRUE or FALSE ObjectVariableBoolean

Rotate In Wall 663 TRUE or FALSE ObjectVariableBoolean

Rotate In Symbol 664 TRUE or FALSE ObjectVariableBoolean

Object Settings Selector Data Type Function

Sweep Z Offset 400 REAL ObjectVariableReal

Is 2D Poly Clockwise 652 TRUE or FALSE ObjectVariableBoolean

Text Is Linked To Record 680 TRUE or FALSE ObjectVariableBoolean

Text Repeating Tab 681 INTEGER ObjectVariableInt

Object Fill Style 695 LONGINT ObjectVariableLongint

Object Fill Type 696 INTEGER GetObjectBariableInt

Object Is Locked 700 TRUE or FALSE ObjectVariableBoolean

Format Is Visible 900 TRUE or FALSE ObjectVariableBoolean
G-8 VectorScript Language Guide

HH

HMenu Selectors
In this Chapter:

• Menu Items and
VectorScript

• Menu Command
Selectors

• Menu Chunk
Selectors
Menu Items and VectorScript

VectorScript provides the DoMenuTextByName function
call to allow selection of workspace menu items directly
from within a script. The appendix lists the selectors which
are used with DoMenuTextByName to invoke a specific
menu command.

Plug-in Menu Commands

VectorWorks workspaces are a mixture of internally-based
menu command and external plug-in based commands. To
specify an item which is a plug-in item, use the file name of
the item as found in the Plug-ins folder.

Menu Chunks

Certain menu command are actually components of a
workspace element known as a menu chunk. These
elements group related items as a functional unit for ease of
editing a VectorWorks workspace.
Menu chunks are called by using the name of the chunk and
specifying an index value indicating the position of the
desired item within the chunk. For example, to call the
Right Isometric item (which is a part of the Standard
Views menu chunk), use the function call:

DoMenuTextByName('Standard Views',8);

The index value 8 indicates the Right Isometric command,
which is the eighth item in the menu chunk.
VectorScript Language Guide H-1

Menu Selectors
 Menu Command Selectors
Menu Command Selector

Add Surface Add Surface

Align Objects Align Objects

Align to Grid Align to Grid

VectorWorks Preferences... Application Preferences

Arc Smoothing Arc Smoothing

Arrow Heads... Arrow Heads

Bezier Spline Smoothing Bezier Spline Smoothing

Classes... Classes

Clear Clear

Clip Surface Clip Surface

Close Close

Color Palette... Color Palette

Column... Column

Combine Into Surface Combine Into Surface

Compose Curve Compose Curve

Convert Copy to Lines Convert Copy to Lines

Convert Copy to Polygons Convert Copy to Polygons

Convert to 3D Polys Convert to 3D Polys

Convert to Lines Convert to Lines

Convert to Mesh Convert to Mesh

Convert to NURBS Convert To NURBS

Convert to Polygons Convert to Polygons

Copy Copy

Create Layer Link... Create Layer Link

Create Plug-in... Create Plug-in

Create Report... Create Report

Create Symbol... Create Symbol

Cubic Spline Smoothing Cubic Spline Smoothing

Custom RenderWorks Options... Custom RW Options Chunk

Custom Selection... Custom Selection

Custom Tool/Attribute... Custom Tool/Attribute

Custom Visibility... Custom Visibility
H-2 VectorScript Language Guide

Menu Command Selectors
H

Cut Cut

Cut 2D Section Cut 2D Section

Cut 3D Section Cut 3D Section

Dash Styles... Dash Styles

Decompose Curve Decompose Curve

Deselect All Deselect All

Document Preferences Document Preferences

Duplicate Duplicate

Duplicate Array... Duplicate Array

Edit Constraints... Edit Constraints

Export Database... Export Database

Export DXF/DWG... Export DXF/DWG

Export EPSF... Export EPSF

Export Image File... Export Image File

Export PICT... Export PICT

Export RenderMan Export RenderMan

Export Simple VectorScript (3D only) Export Simple VectorScript (3D only)

Export VectorScript... Export Text Format

Export VRML... Export VRML Chunk

Export Worksheet... Export Worksheet

Extrude Extrude

Extrude... Extrude and Edit

Fit To Window Fit to Window

Flip Horizontal Flip Horizontal

Flip Vertical Flip Vertical

Floor... Floor

Format Text... Format Text

Hatch... Hatch

Import DXF/DWG... Import DXF/DWG

Import EPSF... Import EPSF

Import Image File... Import Image File

Import PICT... Import PICT

Import PICT as Picture... Import PICT as Picture

Menu Command Selector
VectorScript Language Guide H-3

Menu Selectors
Import VectorScript... Import Text Format

Import Worksheet... Import Worksheet

Intersect Surface Intersect Surface

Layer Scale... Layer Scale

Layers... Layers

Line Thickness... Line Thickness

Link Text To Record Link Text to Record

Lock Lock

lower case lower case

Move... Move

Move 3D... Move 3D

Move Working Plane Move Working Plane

Multiple Extrude Multiple Extrude

Multiple Extrude... Multiple Extrude and Edit

New... New

Next View Next View

No Smoothing No Smoothing

Normal Scale Normal Scale

Open... Open

Page Setup... Page Setup

Paste Paste

Paste As Picture Paste As Picture

Paste In Place Paste In Place

Patterns... Patterns

Previous Selection Previous Selection

Previous Views Previous View

Print... Print

Engineering Properties... Properties

Quit Quit

Redo Redo

Revert To Saved Revert To Saved

Roof Face... Roof Face

Rotate... Rotate

Menu Command Selector
H-4 VectorScript Language Guide

Menu Command Selectors
H

Rotate 3D... Rotate 3D

Rotate 3D VIew... Rotate 3D View

Rotate Left 90° Rotate Left 90

Rotate Right 90° Rotate Right 90

Rotate Working Plane... Rotate Working Plane

Save Save

Save As... Save As

Save As Template... Save As Template

Save View Save View

Scale Objects... Scale Objects

Select All Select All

Send Backward Send Backward

Send Forward Send Forward

Send to Back Send to Back

Send to Front Send to Front

Set 3D View... Set 3D View

Set Grid... Set Grid

Set Layer Ambient... Set Layer Ambient

Set Origin... Set Origin

Set Print Area... Set Print Area

Set Size... Set Size

Shallow Symbol to Group Shallow Symbol to Group

Sweep Sweep

Sweep... Sweep and Edit

Symbol to Group Symbol to Group

Title Caps Title Caps

Trace Bitmap Trace Bitmap

Undo Undo

Units... Units

Unlock Unlock

Unrotate 3D Objects Unrotate 3D Objects

UPPER CASE UPPER CASE

Menu Command Selector
VectorScript Language Guide H-5

Menu Selectors
Menu Chunk Selectors

Wall Framer... Wall Framer

Workgroup References... Workgroup References

Menu Command Selector

Active Only
Gray Others
Show/Snap/Modify Others

Class Options

Convert to Group Convert to Group Chunk

Export As MiniCAD 7 File...
Export As VectorWorks 8 File...
Export As VectorWorks9 File...

Export Previous File Version

6
9
10
12
18
20
24
28
36
48
72
96
144

Font Size

Plain
Bold
Italic
Underline
Outline
Shadow

Font Style

Group
Ungroup

Group Chunk

Edit Group
Exit Group
Top Level

Group Navigation Chunk

Menu Command Selector
H-6 VectorScript Language Guide

Menu Chunk Selectors
H

Make Guides
Select Guides
Show Guides
Hide Guides
Delete All Guides

Guides

Join Join Chunk

Active Only
Gray Others
Show Others
Show/Snap Others
Show/Snap/Modify Others

Layer Options

Hidden Line
Dashed Line

Line Render Chunk

OpenGL Options... OpenGL Options Chunk

OpenGL OpenGL Render Chunk

Set Perspective...
Narrow Perspective
Normal Perspective
Wide Perspective

Perspective Chunk

Unshaded Polygon
Shaded Polygon
Shaded Polygon No Lines
Final Shaded Polygon

Polygon Render Chunk

2D Plan
Orthogonal
Perspective
Oblique Cavalier 45
Oblique Cavalier 30
Oblique Cabinet 45
Oblique Cabinet 30

Projection

Fast RenderWorks
Fast RenderWorks with Shadows
Final Quality RenderWorks
Custom RenderWorks
Custom RenderWorks Options...

RenderWorks Render Chunk

Add Solids
Subtract Solids...
Intersect Solids

Solid Operations

Menu Command Selector
VectorScript Language Guide H-7

Menu Selectors
Constraints
Attributes
Object Info
Working Planes
Resource Browser

Standard Palettes Chunk

Top/Plan
Top
Front
Right
Bottom
Back
Left
Right Isometric
Left Isometric
Right Rear Iso
Left Rear Iso
Lower Right Iso
Lower Left Iso
Lower Right Rear
Lower Left Rear

Standard Views

Left
Center
Right

Text Horizontal Alignment

Single Space
1-1/2 Space
Double Space
Other...

Text Spacing

Top
Top Baseline
Center
Bottom Baseline
Bottom

Text Vertical Alignment

Use Full Screen Use Full Screen Chunk

Wireframe Wireframe Render Chunk

Menu Command Selector
H-8 VectorScript Language Guide

II

IScript Encryption
In this Chapter:

• Encryption
Overview

• Encrypting
Scripts

• Include Files and
Encryption
Encryption Overview

VectorScript provides support for protecting scripts by
encryption. Encrypted scripts can then be distributed for
sale or other use without making the script source code
available for unintended reuse or modification.
VectorScript supports encryption of plug-ins, document
scripts, and standalone script files.

VectorScript encryption is non-reversible, meaning that
once a script is encrypted, it cannot be decrypted for further
editing or modification. Scripts should always be saved to a
separate file or location prior to encryption to prevent loss
of script code.

Encrypting Scripts

Plug-ins

1. Select Organize > Scripts > Create Plug-in. In the
VectorScript Plug-in Editor, select the plug-in to be
protected from the editor list.

2. Use the following key combination, pressing the keys
simultaneously:

3. Click on the Script button in the Editor. Confirm
twice that the plug-in should be protected.

Macintosh CAPS LOCK+SHIFT+OPTION+COMMAND

Windows SHIFT+CTRL+ALT
VectorScript Language Guide I-1

Script Encryption
Document Scripts (Script Palette)

1. Open a script palette and select the script to be protected.

2. Use the following key combination, pressing the keys simultaneously:

3. Double-click on the selected script in the palette. Confirm twice that the
script should be protected.

File Scripts (Text Files)

1. Select Organize > Scripts > Encrypt Scripts.

2. Select the text file containing the script, and then click Open.

3. Enter a new name for the encrypted file, and then click Save.

The file is encrypted and saved under the new name.

Macintosh CAPS LOCK+SHIFT+OPTION+COMMAND

Windows SHIFT+CTRL+ALT

Select the plug-in to
protect

Press the key
combination and then

the Script button

Press the key
combination and then

double-click on the
script
I-2 VectorScript Language Guide

Include Files and Encryption
I

Include Files and Encryption

Include files used with scripts can be handled in one of two ways during the
encryption process. Include files may left as unencrypted source code external
to the script by appending a .vss extension to the file name. When the script
which references the include file is encrypted, the link to the file will be
preserved, and the script will use the code from the include file when
executed. Scripts encrypted using this method still require the presence of the
include file in order to execute correctly.
Note: Unencrypted include files which will be used with encrypted scripts

should not reference subroutines, constants, or variables contained
within the script. References to these items in an encrypted script will
cause the script to fail.

Alternatively, include files can be encrypted along with the script which calls
them by appending a .px extension to the name of the include file. In this
case, the contents of the include file are copied into the calling script and then
the entire body of source code is encrypted. The source code of the include
file remains untouched by the encryption process. Scripts encrypted in this
manner do not require the presence of external include files to execute
correctly, as they contain all the needed code within the encrypted script.
For example, suppose the following procedure was in the include file
myinclude.vss and was to be used in another script:

The calling script then referenced the include file as shown:

PROCEDURE Remote_Sub;

VAR

j:INTEGER;

BEGIN

AlrtDialog('This is the include function');

END;

PROCEDURE EncryptExample1;

VAR

i:INTEGER;

s:STRING;

{$INCLUDE myinclude.vss}
VectorScript Language Guide I-3

Script Encryption
If the script above were encrypted, the subroutine Remote_Sub would remain
in the include file. It would be called as needed by the EncryptExample1
script, and the include file would also need to be present in order for
EncryptExample1 to execute properly. If we were to change the name of the
include file and modify the calling script as shown:

In this instance the code from myinclude.px would be copied into the
calling script at the location of the include statement, and the entire script
would then be encrypted. The encrypted script would require no additional
files to execute properly, and the original code in the file myinclude.px
would be untouched.
Note: Include files should NOT be encrypted as standalone documents

separate from a script. Files encrypted in such a manner cannot be
referenced from another script, and cannot be decrypted.

BEGIN

Remote_Sub;

END;

Run(EncryptExample1);

PROCEDURE EncryptExample1;

VAR

i:INTEGER;

s:STRING;

{$INCLUDE myinclude.px}

BEGIN

Remote_Sub;

END;

Run(EncryptExample1);
I-4 VectorScript Language Guide

JJ

JColor Palette
In this Chapter:

• VectorWorks
Standard Color
Palette
VectorWorks Standard Color Palette
VectorScript Language Guide J-1

Color Palette
J-2 VectorScript Language Guide

1Index
Symbols
{$DEBUG} 17-10, C-2
{$INCLUDE} C-1
{$NAMES} C-2
{$STRICT} C-3

A
Accessing parameters from scripts 10-11
Actual parameters 8-8
Array

dynamic 4-3
index 4-1
static 4-1

B
Block scope 8-9
Branching 7-10

C
CASE 7-13
Comments 2-2
Compound expressions 6-1
CONST block 3-3
Constant definition 3-3
Constants 3-3
Control expression 7-8
Control variable 7-7
Creating static symbols with objects 13-12

D
Data types

BOOLEAN 3-6
CHAR 3-6
HANDLE 3-7
INTEGER 3-4
LONGINT 3-5

REAL 3-5
STRING 3-6
VECTOR 3-7

Debugger
controlling scripts 17-14
controls 17-12
using breakpoints 17-16

Delimiters 2-2
Development tools

plug-in editor 17-7
VectorScript debugger 17-10
VectorScript editor 17-4

Document script 17-1
creating 17-2
editing 17-2

Dynamic arrays 4-3
ALLOCATE 4-4
dimensioning 4-4
extended string support with CHAR arrays 4-7
one-dimensional dynamic array 4-3
performance considerations 4-6
two-dimensional dynamic array 4-3

E
Expressions

arithmetic operators 6-3
associativity 6-3
comparison operators 6-5
complex expressions 6-1
logical operators 6-6
operator precedence 6-2
simple expressions 6-1

F
Floating-point values 3-5
FOR..DOWNTO 7-8
FOR..TO 7-8
Formal parameters 8-8
VectorScript Language Guide I-1

Fundamental types 3-4

G
Global scope 8-11
Group symbol 13-12

I
Icon, specifying 16-3
Identifiers 2-5
IF..THEN 7-10

K
Keywords 2-6

L
Linear objects

adding to workspace 16-10
setting display defaults 15-3, 16-3
setting object category 15-2, 16-2

Literals 2-3
BOOLEAN literals 2-5
floating-point literals 2-3
integer literals 2-3
NIL 2-5
string literals 2-4

Looping 7-7

M
Menu chunk H-1
Menu command plug-ins

adding to workspace 11-6
creating parameter record for 11-5
creating plug-in 11-1
creating script for 11-6
setting category 11-2
setting document properties 11-3
setting help text 11-4

Menu commands (.vsm) 10-1

O
Object symbol 13-12
Objects (.vso) 10-1
Operand 6-1
Operators 6-2

arithmetic 6-3
array access 6-8
assignment 6-8
associativity 6-3
binary 6-2
comparison 6-5
logical 6-6
member access 6-9
precedence 6-2
unary 6-2

P
Parameter fields 10-4
Parameter list 8-2
Parameter records 10-4
Parameter types 10-5
Path objects

creating a new object 16-1
creating group symbols with 16-16
creating object symbols with 16-15
creating parameter record for 16-8
creating script for 16-8
creating static symbols with 16-14
placing instances in document 16-11
setting activation options 16-4
setting category of 16-2
setting display defaults 16-3
setting help text 11-4, 12-5, 16-5
setting insertion options 16-9
setting object icon 16-3
setting object reset options 16-6

Plug-in
editor 17-7
objects 10-1
parameters 10-4

Plug-in menu commands H-1
I-2 VectorScript Language Guide

Index
Point objects
adding to workspace 13-9
creating 13-2
creating group symbols with 13-14
creating object symbols with 13-13
creating parameter record for 13-6
creating script for 13-7
editing instances in document 13-11
placing instance in document 13-10
setting activation options 13-4
setting category of 13-2
setting default class 13-4
setting display defaults 13-3
setting help text 13-5
setting insertion options 13-8
setting object reset options 13-5
setting the object icon 13-3

Program block 8-9

R
Rectangular objects

adding to workspace 15-9
creating a new object 15-1
creating group symbols with 15-15
creating object symbols with 15-14
creating parameter record for 15-7
creating script for 15-8
creating static symbols with 15-13
placing instances in document 15-10
setting activation options 15-4
setting category of 15-2
setting default class of 15-4
setting display defaults 15-3
setting help text 15-5
setting insertion options 15-8
setting object icon 15-3
setting object reset options 15-5

REPEAT..UNTIL 7-9
Reserved 2-6
Reserved words 2-6
Return value 8-4

S
Script palette 17-1
Search attribute type specifier B-1
Search criteria B-1
Search value B-1
Setting parameter values from scripts 10-12
Source-level debugger 17-10
Special symbols 2-2, 2-7
Statements

assignment 7-1
assignments to arrays 7-3
compound 7-5
conditional 7-10
constant ranges with CASE 7-14
control expressions in CASE statements 7-13
FOR..DOWNTO 7-8
FOR..TO 7-7
GOTO 7-6
IF..THEN 7-10
procedure 7-5
REPEAT..UNTIL 7-9
repetition 7-7
WHILE..DO 7-8

Static arrays 4-1
accessing an array element 4-3
one-dimensional static array 4-1
two-dimensional static array 4-3

Structures
member access 5-3
members 5-1

Subroutines 8-1
Symbols 2-1

T
Tokens 2-1
Tool (.vst) 10-1
Tool items

adding to workspace 12-8
creating 12-1
creating parameter record for 12-6
creating script for 12-7
VectorScript Language Guide I-3

setting activation options 12-4
setting category of 12-2
setting help text 12-5, 16-5
setting mode bar text 12-3
setting the tool icon 12-3, 15-3, 16-3

TYPE block 5-1

U
User-defined

function 8-4
procedures 8-1
types 3-4

V
Value parameters 8-8
VAR block 3-2
Variable declaration 3-1
Variable parameters 8-8
Variables 3-1
Vectors and array notation 4-6
VectorScript editor 17-4

W
WHILE..DO 7-8
I-4 VectorScript Language Guide

	Zurück zur Startseite
	Welcome
	Copyright Information
	Table of Contents
	Introduction to VectorScript
	Some Background On VectorScript
	What VectorScript Can Do
	Object Creation and Editing
	Document Control
	Extended Data

	What VectorScript Can't Do
	An Example Script
	New Features in VectorScript 10
	Using the Rest of this Manual
	Exploring VectorScript

	Lexical Structures of VectorScript
	Case Sensitivity
	Symbols
	Delimiters
	Comments
	Literals
	Integer Literals
	Integer Literals

	Floating-point Literals
	Floating-point Literals

	String Literals
	String Literals

	Boolean Literals
	The NIL Literal

	Identifiers
	Value Identifiers
	Invalid Identifiers

	Reserved Words
	VectorScript Keywords
	Other Keywords

	Special Symbols
	VectorScript Special Symbols

	Variables, Constants, and Data Types
	Variables
	VectorScript Type Declarations

	Constants
	Functions Supported in the Constant Definition Block

	VectorScript Data Types
	Fundamental Data Types – Numeric
	INTEGER
	LONGINT
	REAL

	Fundamental Data Types – Text
	STRING
	CHAR

	Fundamental Data Types – Other
	BOOLEAN
	HANDLE
	VECTOR
	POINT
	POINT3D
	RGBCOLOR

	Arrays in VectorScript
	Static Arrays
	Dynamic Arrays
	Performance Considerations with Dynamic Arrays
	Vectors and Array Notation
	Extended String Support with CHAR Arrays
	Assignments Between STRING Values and CHAR Arrays
	Retrieving or Assigning Strings to Text Objects
	Retrieving or Assigning Strings to Record Fields

	Performing Standard STRING-Related Operations
	VectorScript Functions with CHAR Array Support

	Structures
	Creating Structures
	Accessing Values in a Structure

	Expressions
	Simple Expressions
	Simple Expressions

	Complex Expressions
	Operator Precedence
	Operator Associativity
	Arithmetic Operators
	Unary negation (-)
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Integer Division (DIV)
	Remainder Division (MOD)
	Exponentiation (^)

	Comparison Operators
	Comparison Operators
	Less Than (<)
	Less Than or Equal To (<=)
	Greater Than (>)
	Greater Than or Equal To (>=)
	Equality (=)
	Inequality (<>)

	Logical Operators
	Logical Operators
	Logical NOT (NOT)
	Logical AND (AND)
	Logical short-circuit AND (&)
	Logical OR (OR)
	Logical Short-circuit OR (|)

	Other Operators
	Assignment Operator (:=)
	Array Access Operator ([])
	Vector / Structure Member Access Operator (.)

	Statements
	Assignment Statements
	Compound Statements
	Procedure Statements
	GOTO Statements
	Repetition Statements
	The FOR Statement
	The WHILE Statement
	The REPEAT Statement

	Conditional Statements
	The IF Statement
	The CASE Statement

	User Defined Functions
	User-Defined Procedures
	User-Defined Functions
	Parameters
	Formal and Actual Parameters
	Value and Variable Parameters

	Program Blocks and Block Scope

	User Interface
	Predefined Alerts
	Custom Dialogs
	Custom Dialog Concepts
	Controls
	Events

	Custom Dialog Controls
	Static Text
	Edit Text
	Edit Text Box
	Edit Integer
	Edit Real
	Push Button
	Radio Button
	Check Box
	Pulldown Menu
	List Box
	Group Box
	Slider
	Image Pane
	Color Palette
	Image Popup
	Gradient Slider

	Creating a Custom Dialog
	Defining the Dialog Controls
	Defining the Dialog Layout
	Running the Dialog
	Handling Dialog Events

	Using VectorScript Plug-ins
	Creating and Using Plug-ins
	Using the Different Types of Plug-ins
	How Plug-ins Work

	Understanding Plug-In Parameters
	How Parameters Work
	Parameter Types
	Integer
	Boolean
	Number
	Text
	Popup
	Radio Button
	Dimension
	X-Coordinate
	Y-Coordinate
	Control Points

	Accessing Parameters from Scripts
	Setting Parameter Values from Scripts
	Setting Parameter Visibilty
	Setting Default Parameter Visibility

	VectorScript Menu Commands
	Creating a Menu Command Plug-in
	Creating the Menu Command Plug-in
	Setting the Category of the Menu Command

	Setting Options for Menu Commands
	Setting Document Properties for the Command
	Setting Help Text for the Menu Command

	Parameters and Menu Commands
	Creating a Parameter Record for a Menu Command
	Creating Script Code for a Menu Command

	Working with Menu Commands
	Adding a Menu Command to a Workspace

	VectorScript Tool Items
	Creating a Tool Item Plug-in
	Creating the Tool Plug-in
	Setting the Tool Category

	Setting Options for the Tool
	Setting Mode Bar Text for the Tool
	Setting the Tool Icon
	Setting Activation Options for the Tool
	Setting View Projection for the Tool
	Setting Script Execution Options for the Tool
	Setting Help Text for the Object

	Parameters and VectorScript Tools
	Creating a Parameter Record for a Tool

	Creating the Tool Script
	Creating Script Code for a Tool

	Working With Tool Items
	Adding a Tool to a Workspace
	Setting Tool Item Defaults

	VectorScript Point Objects
	Creating a Point Object Plug-in
	Creating the Object Plug-in
	Setting the Object Category

	Setting Options for the Object
	Setting Display Defaults for the Object
	Setting the Object Icon
	Setting Activation Options for the Object
	Setting the Default Class of the Object
	Setting Help Text for the Object
	Setting Object Reset Options

	Parameters and Point Objects
	Creating a Parameter Record for an Object

	Creating the Object Script
	Creating Script Code for a Point Object

	Setting Object Insertion Options
	Setting Insertion Options for a Point Object

	Working with Point Objects
	Adding a Point Object to a Workspace
	Placing Objects in Documents
	Editing Objects in the Document

	Using Point Objects with the Resource Browser
	Creating Static Symbols with Objects
	Creating Object Symbols
	Creating Group Symbols with Objects

	VectorScript Linear Objects
	Creating a Linear Object Plug-in
	Creating the Object Plug-in
	Setting the Object Category

	Setting Options for the Object
	Setting Display Defaults for the Object
	Setting the Object Icon
	Setting Activation Options for the Object
	Setting the Default Class of the Object
	Setting Help Text for the Object
	Setting Object Reset Options

	Parameters and Linear Objects
	Creating a Parameter Record for an Object

	Creating the Object Script
	Creating Script Code for a Linear Object

	Setting Object Insertion Options
	Setting Insertion Options for a Linear Object

	Working with Linear Objects
	Adding a Linear Object to a Workspace
	Placing Objects in Documents
	Editing Linear Objects in the Document

	Using Linear Objects with the Resource Browser
	Creating Static Symbols with Linear Objects
	Creating Object Symbols with Linear Objects
	Creating Group Symbols with Linear Objects

	VectorScript Rectangular Objects
	Creating a Rectangular Object Plug-in
	Creating the Object Plug-in
	Setting the Object Category

	Setting Options for the Object
	Setting Display Defaults for the Object
	Setting the Object Icon
	Setting Activation Options for the Object
	Setting the Default Class of the Object
	Setting Help Text for the Object
	Setting Object Reset Options

	Parameters and Rectangular Objects
	Creating a Parameter Record for an Object

	Creating the Object Script
	Creating Script Code for a Rectangular Object

	Setting Object Insertion Options
	Setting Insertion Options for a Rectangular Object

	Working with Rectangular Objects
	Adding a Rectangular Object to a Workspace
	Placing Objects in Documents
	Editing Rectangular Objects in the Document

	Using Rectangular Objects with the Resource Browser
	Creating Static Symbols with Rectangular Objects
	Creating Object Symbols with Rectangular Objects
	Creating Group Symbols with Rectangular Objects

	VectorScript Path Objects
	Creating a Path Object Plug-in
	Creating the Object Plug-in
	Setting the Object Category

	Setting Options for the Object
	Setting Display Defaults for the Object
	Setting the Object Icon
	Setting Activation Options for the Object
	Setting the Default Class of the Object
	Setting Help Text for the Object
	Setting Object Reset Options

	Parameters and Path Objects
	Creating a Parameter Record for an Object

	Creating the Object Script
	Creating Script Code for a Path Object

	Setting Object Insertion Options
	Setting Insertion Options for a Path Object

	Working With Path Objects
	Adding a Path Object to a Workspace
	Placing Objects in Files
	Editing Path Objects

	Using Path Objects with the Resource Browser
	Creating Static Symbols with Path Objects
	Creating Object Symbols with Path Objects
	Creating Group Symbols with Path Objects

	VectorScript Development Tools
	Creating Scripts
	Creating a Document Script
	Editing an Existing Document Script (Resource Browser)
	Editing an Existing Document Script (Script Palette)
	Creating Scripts in the Plug-in Editor

	The VectorScript Editor
	Editor Options
	Procedure
	Inquiry
	Criteria
	Tool / Attribute
	Parameters
	Text File

	Compile Script
	Line Number

	VectorScript Plug-in Editor
	Using the Plug-in Editor
	Managing Plug-ins
	New
	Rename
	Duplicate
	Delete
	Category

	Plug-in Option Settings
	Script
	Properties
	Parameters
	Insert Options

	The VectorScript Debugger
	Launching the Debugger
	The Debugger Interface
	Debugger Controls
	Message Pane
	Script Calling Chain
	Script Source Code
	Variable Data Display

	Controlling Execution
	Running a Script
	Stepping Through a Single Line Of a Script
	Stepping Into a Subroutine
	Stepping Out of a Subroutine
	Auto-Step Through Script
	Pausing Script Execution
	Stopping Script Execution

	Using Breakpoints
	Setting a Breakpoint
	Clearing Breakpoints

	Viewing Data in the Debugger

	Numeric and Data Formats
	Units and Numeric Values in Scripts
	Absolute and Relative Modes
	Distance-angle Mode

	Data Formatting with Write and WriteLn
	Numeric Values and Formatting
	String Values and Formatting
	Examples of Numeric Values and Write-WriteLn
	INTEGER Values
	REAL Values

	Examples of String Values and Write-WriteLn

	Search Criteria
	Search Criteria Format
	Syntax
	Multiple Search Terms
	Multiple Search Values

	Attribute Types
	Markers (AR)
	Class (C)
	Fill Background (FB)
	Fill Foreground (FF)
	Fill Pattern (FP)
	Layer (L)
	Line Weight (LW)
	Pen Pattern/Linestyle (PP)
	Object Name (N)
	Attached Record (R)
	Object Type (T)
	Pen Background (PB)
	Pen Foreground (PF)
	Selection Status (SEL)
	Symbol Name (S)
	Visibility (V)

	Specialized Searches
	Record Field Values
	Search Symbol Instances (INSYMBOL)
	Symbol Flip Status (ISFLIPPED)
	All Objects (ALL)

	Search Criteria Tables

	Compiler Directives
	{$INCLUDE}
	Example: Macintosh-style include directive
	Example: Windows-style include directive

	{$DEBUG}
	{$NAMES}
	Example: Names directive

	{$STRICT}
	Example: Strict directive

	Object Types
	Standard Types

	Selector Tables
	Fill Patterns
	Linestyles
	Markers
	SetTool - CallTool Selectors
	Record Field Data Type Selectors
	Record Field Display Style Selectors
	Dimension Style Selectors
	Linear Dimension
	Circular Dimension
	Angular Dimension

	Preference Selectors
	Using Preference Selectors
	Preference Selector Value Tables
	General Application/Document Preferences
	Primary Units
	Secondary Units
	DXF Preference Selectors
	Gradient and Image Fill Preference Selectors
	Miscellaneous Preference Selectors

	Object Selectors
	Object Variable Selectors
	Setting Selector Value Tables
	Dimension
	Lights
	Symbol/Symbol Definitions
	Roof/Floors/Columns
	Layers
	Layer Link
	Walls/Wall Cavities
	Plug-in Objects
	2D/3D Status
	Worksheets
	Textures
	Gradient and Image Fills

	Menu Selectors
	Menu Items and VectorScript
	Plug-in Menu Commands
	Menu Chunks

	Menu Command Selectors
	Menu Chunk Selectors

	Script Encryption
	Encryption Overview
	Encrypting Scripts
	Plug-ins
	Document Scripts (Script Palette)
	File Scripts (Text Files)

	Include Files and Encryption

	Color Palette
	VectorWorks Standard Color Palette

	Index

