Human Perception of the Urban Environment

A Machine Learning Approach

Varun Ojha

Endzürich iA Chair of Information Architecture

FNSNF Swiss National Science Foundation

Bauhaus-Universität Weimar

About the study

Urban Environment

Dynamic environmental conditions such as noise, temperature, illuminance, field of view, walkable area and traffic speed have the potential to influence an individual's perception.

Human perception

Skin conductance responses of participants were measured with an E4 wearable device and processed to detect arousal levels as an indicator of perception.

Wiedikon | Zürich | Switzerland

Properties of dataset

Participant's data

Some facts

Diversity in days (participants walked on different days)

Diversity in experiment day's time slot

Diversity in participant's demographic profile

Uniformity in study location

Uniformity in season (month of April)

Data samples have the record of time and place

Human perception feature (physiological response) and urban environment features are spatial-temporal data

Physiological responses are time-series data, thus need special treatment.

Data cleaning

Examples of accepted physiological data for processing

Examples of rejected physiological data

Data smoothing and filtering

Stationary Wavelet Transform

Original physiological data \rightarrow **Smooth physiological data**

Data quantification

Arousal (nSCR) level detection

Typical signature of an Skin Conductance Response (SCR)

Source: Braithwaite, J. J., Watson, D. G., Jones, R., & Rowe, M. (2013). A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology, 49, 1017-1034.

Ledalab for EDA signal analysis

Swies National Science Foundation

Fusion

Participant's data fusion

P1 P4 **P**3 PN P5 **P**2

Attributes of the complied dataset

Туре	Attributes/Features
Input	Participant ID
	Timostamn
	Longitude
	Latitude
	Noise
	Dust
	Temperature
	Relative humidity
	Brightness/Illuminance
	Isovist area
	Isovist perimeter
	Isovist compactness
	Isovist occlusivity
Output	Binary/Multiclass/phasic driver

Data labeling

Sense of physiological response (nSCR) labeling

Box plot of nSCR values across all participants

Class o : A samples' physiological response value = o \rightarrow Normal physiological state

Class 1 : A samples' physiological response value > o

 \rightarrow Arousal physiological state

Sensitivity analysis

Inference

11

ONAL SCIENCE FOUNDATION

Feature's importance

- **Environment measures:**
- S Sound
- D Dust
- T Temperature
- R Humidity
- I Illuminance

Field of view measures:

- A Area
- P Perimeter
- C Compactness

Participants experience pattern

SOM – 2D Map

Label Map

Clusters of participant's experience

Physiological responses

Feature Map

HNSNH Swies National Science Foundation

3

2

0

Fusion of data for Geo referencing

Participants data arrangement

<event - response>

Samples

14

Geo-referenced average arousal

Traffic speed

Building construction year

Walkable space

Façade color

DUNDATION

Conclusions

- Conducted a real-life study to understand how human perceive their urban environment. 1.
- Perform fusion of information from multiple sensors responsible for recording 2. environmental features and human physiological respoonses.
- Machine learning analysis affirmed that participants physiological responses were sensitive 3. to slightest change in urban environment.
- Machine learning analysis discovered that all the participants experienced similar 4. environmental conditions, responded in a similar physiological arousal state.
- Geo-referencing of participants physiological state enabled us to study further what was 5. relation between participants physiological responses are dynamic urban environment such as traffic speed.

Thank you

ojha@arch.ethz.ch

www.esum.arch.ethz.ch

Varun Ojha

17